import numpy as np import paddle.fluid as fluid from . import datareader as reader from .metrics import calculate_order_dist_matrix from .metrics import get_gpu_num class quadrupletloss(): def __init__(self, train_batch_size = 80, samples_each_class = 2, margin=0.1): self.margin = margin num_gpus = get_gpu_num() self.samples_each_class = samples_each_class self.train_batch_size = train_batch_size assert(train_batch_size % num_gpus == 0) self.cal_loss_batch_size = train_batch_size // num_gpus assert(self.cal_loss_batch_size % samples_each_class == 0) class_num = train_batch_size // samples_each_class self.train_reader = reader.quadruplet_train(class_num, samples_each_class) self.test_reader = reader.test() def loss(self, input): feature = fluid.layers.l2_normalize(input, axis=1) samples_each_class = self.samples_each_class batch_size = self.cal_loss_batch_size margin = self.margin d = calculate_order_dist_matrix(feature, self.cal_loss_batch_size, self.samples_each_class) ignore, pos, neg = fluid.layers.split(d, num_or_sections= [1, samples_each_class-1, batch_size-samples_each_class], dim=1) ignore.stop_gradient = True pos_max = fluid.layers.reduce_max(pos) neg_min = fluid.layers.reduce_min(neg) pos_max = fluid.layers.sqrt(pos_max) neg_min = fluid.layers.sqrt(neg_min) loss = fluid.layers.relu(pos_max - neg_min + margin) return loss