#!/usr/bin/env bash # download pretrain model root_url="https://paddle-inference-dist.bj.bcebos.com/int8/pretrain" MobileNetV1="MobileNetV1_pretrained.zip" ResNet50="ResNet50_pretrained.zip" GoogleNet="GoogleNet_pretrained.tar" data_dir='/work/datasets/ILSVRC2012/' pretrain_dir='../pretrain' if [ ! -d ${pretrain_dir} ]; then mkdir ${pretrain_dir} fi cd ${pretrain_dir} if [ ! -f ${MobileNetV1} ]; then wget ${root_url}/${MobileNetV1} unzip ${MobileNetV1} fi if [ ! -f ${ResNet50} ]; then wget ${root_url}/${ResNet50} unzip ${ResNet50} fi if [ ! -f ${GoogleNet} ]; then wget ${root_url}/${GoogleNet} tar xf ${GoogleNet} fi cd - export CUDA_VISIBLE_DEVICES=1 export FLAGS_cudnn_deterministic=1 #MobileNet v1: python -u quant.py \ --model=MobileNet \ --pretrained_fp32_model=${pretrain_dir}/MobileNetV1_pretrained \ --use_gpu=True \ --data_dir=${data_dir} \ --batch_size=128 \ --total_images=1281167 \ --class_dim=1000 \ --image_shape=3,224,224 \ --model_save_dir=output/ \ --lr_strategy=piecewise_decay \ --num_epochs=20 \ --lr=0.0001 \ --act_quant_type=moving_average_abs_max \ --wt_quant_type=abs_max #ResNet50: #python quant.py \ # --model=ResNet50 \ # --pretrained_fp32_model=${pretrain_dir}/ResNet50_pretrained \ # --use_gpu=True \ # --data_dir=${data_dir} \ # --batch_size=128 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --lr_strategy=piecewise_decay \ # --num_epochs=20 \ # --lr=0.0001 \ # --act_quant_type=abs_max \ # --wt_quant_type=abs_max