#!/usr/bin/env python # coding: utf-8 from __future__ import print_function, absolute_import, division import os import sys from collections import Counter import numpy as np """ preprocess Criteo train data, generate extra statistic files for model input. """ # input filename FILENAME = 'train.txt' # global vars CAT_FEATURE_NUM = 'cat_feature_num.txt' INT_FEATURE_MINMAX = 'int_feature_minmax.txt' VOCAB_DIR = 'vocab' TRAIN_DIR = 'train' TEST_VALID_DIR = 'test_valid' SPLIT_RATIO = 0.9 LINE_NUMS = "line_nums.log" FREQ_THR = 10 INT_COLUMN_NAMES = ['I' + str(i) for i in range(1, 14)] CAT_COLUMN_NAMES = ['C' + str(i) for i in range(1, 27)] def check_statfiles(): """ check if statistic files of Criteo exists :return: """ statsfiles = [CAT_FEATURE_NUM, INT_FEATURE_MINMAX] + [ os.path.join(VOCAB_DIR, cat_fn + '.txt') for cat_fn in CAT_COLUMN_NAMES ] if all([os.path.exists(fn) for fn in statsfiles]): return True return False def create_statfiles(): """ create statistic files of Criteo, including: min/max of interger features counts of categorical features vocabs of each categorical features :return: """ int_minmax_list = [[sys.maxsize, -sys.maxsize] for _ in range(13)] # count integer feature min max cat_ct_list = [Counter() for _ in range(26)] # count categorical features for idx, line in enumerate(open(FILENAME)): spls = line.rstrip('\n').split('\t') assert len(spls) == 40 for i in range(13): if not spls[1 + i]: continue int_val = int(spls[1 + i]) int_minmax_list[i][0] = min(int_minmax_list[i][0], int_val) int_minmax_list[i][1] = max(int_minmax_list[i][1], int_val) for i in range(26): cat_ct_list[i].update([spls[14 + i]]) # save min max of integer features with open(INT_FEATURE_MINMAX, 'w') as f: for name, minmax in zip(INT_COLUMN_NAMES, int_minmax_list): print("{} {} {}".format(name, minmax[0], minmax[1]), file=f) # remove '' from all cat_set[i] and filter low freq categorical value cat_set_list = [set() for i in range(len(cat_ct_list))] for i, ct in enumerate(cat_ct_list): if '' in ct: del ct[''] for key in list(ct.keys()): if ct[key] >= FREQ_THR: cat_set_list[i].add(key) del cat_ct_list # create vocab dir if not os.path.exists(VOCAB_DIR): os.makedirs(VOCAB_DIR) # write vocab file of categorical features with open(CAT_FEATURE_NUM, 'w') as cat_feat_count_file: for name, s in zip(CAT_COLUMN_NAMES, cat_set_list): print('{} {}'.format(name, len(s)), file=cat_feat_count_file) vocabfile = os.path.join(VOCAB_DIR, name + '.txt') with open(vocabfile, 'w') as f: for vocab_val in s: print(vocab_val, file=f) def split_data(): """ split train.txt into train and test_valid files. :return: """ if not os.path.exists(TRAIN_DIR): os.makedirs(TRAIN_DIR) if not os.path.exists(TEST_VALID_DIR): os.makedirs(TEST_VALID_DIR) fin = open('train.txt', 'r') data_dir = TRAIN_DIR fout = open(os.path.join(data_dir, 'part-0'), 'w') split_idx = int(45840617 * SPLIT_RATIO) for line_idx, line in enumerate(fin): if line_idx == split_idx: fout.close() data_dir = TEST_VALID_DIR cur_part_idx = int(line_idx / 200000) fout = open(data_dir + '/part-' + str(cur_part_idx), 'w') if line_idx % 200000 == 0 and line_idx != 0: fout.close() cur_part_idx = int(line_idx / 200000) fout = open(data_dir + '/part-' + str(cur_part_idx), 'w') fout.write(line) fout.close() fin.close() if __name__ == '__main__': if not check_statfiles(): print('create statstic files of Criteo...') create_statfiles() print('split train.txt...') split_data() print('done')