import argparse import sys import time import math import unittest import contextlib import numpy as np import six import paddle.fluid as fluid import paddle import net import utils def parse_args(): parser = argparse.ArgumentParser("gru4rec benchmark.") parser.add_argument( '--test_dir', type=str, default='test_data', help='test file address') parser.add_argument( '--start_index', type=int, default='1', help='start index') parser.add_argument( '--last_index', type=int, default='3', help='last index') parser.add_argument( '--model_dir', type=str, default='model_neg_recall20', help='model dir') parser.add_argument( '--use_cuda', type=int, default='0', help='whether use cuda') parser.add_argument( '--batch_size', type=int, default='5', help='batch_size') parser.add_argument( '--hid_size', type=int, default='100', help='batch_size') parser.add_argument( '--vocab_path', type=str, default='vocab.txt', help='vocab file') args = parser.parse_args() return args def infer(args, vocab_size, test_reader, use_cuda): """ inference function """ place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) hid_size = args.hid_size batch_size = args.batch_size with fluid.scope_guard(fluid.Scope()): main_program = fluid.Program() with fluid.program_guard(main_program): acc = net.infer_network(vocab_size, batch_size, hid_size) for epoch in range(start_index, last_index + 1): copy_program = main_program.clone() model_path = model_dir + "/epoch_" + str(epoch) fluid.io.load_params( executor=exe, dirname=model_path, main_program=copy_program) accum_num_recall = 0.0 accum_num_sum = 0.0 t0 = time.time() step_id = 0 for data in test_reader(): step_id += 1 label_data = [dat[1] for dat in data] ls, lp = utils.to_lodtensor_bpr_test(data, vocab_size, place) para = exe.run( copy_program, feed={ "src": ls, "all_label": np.arange(vocab_size).reshape(vocab_size, 1), "pos_label": lp }, fetch_list=[acc.name], return_numpy=False) acc_ = np.array(para[0])[0] data_length = len( np.concatenate( label_data, axis=0).astype("int64")) accum_num_sum += (data_length) accum_num_recall += (data_length * acc_) if step_id % 1 == 0: print("step:%d recall@20:%.4f" % (step_id, accum_num_recall / accum_num_sum)) t1 = time.time() print("model:%s recall@20:%.4f time_cost(s):%.2f" % (model_path, accum_num_recall / accum_num_sum, t1 - t0)) if __name__ == "__main__": utils.check_version() args = parse_args() start_index = args.start_index last_index = args.last_index test_dir = args.test_dir model_dir = args.model_dir batch_size = args.batch_size vocab_path = args.vocab_path use_cuda = True if args.use_cuda else False print("start index: ", start_index, " last_index:", last_index) vocab_size, test_reader = utils.prepare_data( test_dir, vocab_path, batch_size=batch_size, buffer_size=1000, word_freq_threshold=0, is_train=False) infer(args, vocab_size, test_reader=test_reader, use_cuda=use_cuda)