# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import time import os import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.framework as framework from paddle.fluid.executor import Executor from paddle.fluid.contrib.decoder.beam_search_decoder import * from args import * import attention_model import no_attention_model def train(): args = parse_args() if args.enable_ce: framework.default_startup_program().random_seed = 111 # Training process if args.no_attention: avg_cost, feed_order = no_attention_model.seq_to_seq_net( args.embedding_dim, args.encoder_size, args.decoder_size, args.dict_size, args.dict_size, False, beam_size=args.beam_size, max_length=args.max_length) else: avg_cost, feed_order = attention_model.seq_to_seq_net( args.embedding_dim, args.encoder_size, args.decoder_size, args.dict_size, args.dict_size, False, beam_size=args.beam_size, max_length=args.max_length) # clone from default main program and use it as the validation program main_program = fluid.default_main_program() inference_program = fluid.default_main_program().clone() optimizer = fluid.optimizer.Adam( learning_rate=args.learning_rate, regularization=fluid.regularizer.L2DecayRegularizer( regularization_coeff=1e-5)) optimizer.minimize(avg_cost) # Disable shuffle for Continuous Evaluation only if not args.enable_ce: train_batch_generator = paddle.batch( paddle.reader.shuffle( paddle.dataset.wmt14.train(args.dict_size), buf_size=1000), batch_size=args.batch_size, drop_last=False) test_batch_generator = paddle.batch( paddle.reader.shuffle( paddle.dataset.wmt14.test(args.dict_size), buf_size=1000), batch_size=args.batch_size, drop_last=False) else: train_batch_generator = paddle.batch( paddle.dataset.wmt14.train(args.dict_size), batch_size=args.batch_size, drop_last=False) test_batch_generator = paddle.batch( paddle.dataset.wmt14.test(args.dict_size), batch_size=args.batch_size, drop_last=False) place = core.CUDAPlace(0) if args.use_gpu else core.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) feed_list = [ main_program.global_block().var(var_name) for var_name in feed_order ] feeder = fluid.DataFeeder(feed_list, place) def validation(): # Use test set as validation each pass total_loss = 0.0 count = 0 val_feed_list = [ inference_program.global_block().var(var_name) for var_name in feed_order ] val_feeder = fluid.DataFeeder(val_feed_list, place) for batch_id, data in enumerate(test_batch_generator()): val_fetch_outs = exe.run(inference_program, feed=val_feeder.feed(data), fetch_list=[avg_cost], return_numpy=False) total_loss += np.array(val_fetch_outs[0])[0] count += 1 return total_loss / count for pass_id in range(1, args.pass_num + 1): pass_start_time = time.time() words_seen = 0 for batch_id, data in enumerate(train_batch_generator()): words_seen += len(data) * 2 fetch_outs = exe.run(framework.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost]) avg_cost_train = np.array(fetch_outs[0]) print('pass_id=%d, batch_id=%d, train_loss: %f' % (pass_id, batch_id, avg_cost_train)) # This is for continuous evaluation only if args.enable_ce and batch_id >= 100: break pass_end_time = time.time() test_loss = validation() time_consumed = pass_end_time - pass_start_time words_per_sec = words_seen / time_consumed print("pass_id=%d, test_loss: %f, words/s: %f, sec/pass: %f" % (pass_id, test_loss, words_per_sec, time_consumed)) # This log is for continuous evaluation only if args.enable_ce: print("kpis\ttrain_cost\t%f" % avg_cost_train) print("kpis\ttest_cost\t%f" % test_loss) print("kpis\ttrain_duration\t%f" % time_consumed) if pass_id % args.save_interval == 0: model_path = os.path.join(args.save_dir, str(pass_id)) if not os.path.isdir(model_path): os.makedirs(model_path) fluid.io.save_persistables( executor=exe, dirname=model_path, main_program=framework.default_main_program()) if __name__ == '__main__': train()