# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import unittest import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.dygraph.nn import Embedding import paddle.fluid.framework as framework from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.dygraph.base import to_variable import numpy as np import six import multiprocessing import reader import model_check import time from args import * #import fluid.clip as clip #from fluid.clip import * import sys if sys.version[0] == '2': reload(sys) sys.setdefaultencoding("utf-8") class SimpleLSTMRNN(fluid.Layer): def __init__(self, hidden_size, num_steps, num_layers=2, init_scale=0.1, dropout=None): super(SimpleLSTMRNN, self).__init__() self._hidden_size = hidden_size self._num_layers = num_layers self._init_scale = init_scale self._dropout = dropout self._num_steps = num_steps self.cell_array = [] self.hidden_array = [] self.weight_1_arr = [] self.weight_2_arr = [] self.bias_arr = [] self.mask_array = [] for i in range(self._num_layers): weight_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)), shape=[self._hidden_size * 2, self._hidden_size * 4], dtype="float32", default_initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)) self.weight_1_arr.append(self.add_parameter('w_%d' % i, weight_1)) bias_1 = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.UniformInitializer( low=-self._init_scale, high=self._init_scale)), shape=[self._hidden_size * 4], dtype="float32", default_initializer=fluid.initializer.Constant(0.0)) self.bias_arr.append(self.add_parameter('b_%d' % i, bias_1)) def forward(self, input_embedding, init_hidden=None, init_cell=None): cell_array = [] hidden_array = [] for i in range(self._num_layers): hidden_array.append(init_hidden[i]) cell_array.append(init_cell[i]) res = [] for index in range(self._num_steps): step_input = input_embedding[:,index,:] for k in range(self._num_layers): pre_hidden = hidden_array[k] pre_cell = cell_array[k] weight_1 = self.weight_1_arr[k] bias = self.bias_arr[k] nn = fluid.layers.concat([step_input, pre_hidden], 1) gate_input = fluid.layers.matmul(x=nn, y=weight_1) gate_input = fluid.layers.elementwise_add(gate_input, bias) i, j, f, o = fluid.layers.split( gate_input, num_or_sections=4, dim=-1) c = pre_cell * fluid.layers.sigmoid(f) + fluid.layers.sigmoid( i) * fluid.layers.tanh(j) m = fluid.layers.tanh(c) * fluid.layers.sigmoid(o) hidden_array[k] = m cell_array[k] = c step_input = m if self._dropout is not None and self._dropout > 0.0: step_input = fluid.layers.dropout( step_input, dropout_prob=self._dropout, dropout_implementation='upscale_in_train') res.append(step_input) real_res = fluid.layers.concat(res, 1) real_res = fluid.layers.reshape(real_res, [ -1, self._num_steps, self._hidden_size]) last_hidden = fluid.layers.concat(hidden_array, 1) last_hidden = fluid.layers.reshape( last_hidden, shape=[-1, self._num_layers, self._hidden_size]) last_hidden = fluid.layers.transpose(x=last_hidden, perm=[1, 0, 2]) last_cell = fluid.layers.concat(cell_array, 1) last_cell = fluid.layers.reshape( last_cell, shape=[-1, self._num_layers, self._hidden_size]) last_cell = fluid.layers.transpose(x=last_cell, perm=[1, 0, 2]) return real_res, last_hidden, last_cell class PtbModel(fluid.Layer): def __init__(self, hidden_size, vocab_size, num_layers=2, num_steps=20, init_scale=0.1, dropout=None): super(PtbModel, self).__init__() self.hidden_size = hidden_size self.vocab_size = vocab_size self.init_scale = init_scale self.num_layers = num_layers self.num_steps = num_steps self.dropout = dropout self.simple_lstm_rnn = SimpleLSTMRNN( hidden_size, num_steps, num_layers=num_layers, init_scale=init_scale, dropout=dropout) self.embedding = Embedding( size=[vocab_size, hidden_size], dtype='float32', is_sparse=False, param_attr=fluid.ParamAttr( name='embedding_para', initializer=fluid.initializer.UniformInitializer( low=-init_scale, high=init_scale))) self.softmax_weight = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.hidden_size, self.vocab_size], dtype="float32", default_initializer=fluid.initializer.UniformInitializer( low=-self.init_scale, high=self.init_scale)) self.softmax_bias = self.create_parameter( attr=fluid.ParamAttr(), shape=[self.vocab_size], dtype="float32", default_initializer=fluid.initializer.UniformInitializer( low=-self.init_scale, high=self.init_scale)) def build_once(self, input, label, init_hidden, init_cell): pass def forward(self, input, label, init_hidden, init_cell): init_h = fluid.layers.reshape( init_hidden, shape=[self.num_layers, -1, self.hidden_size]) init_c = fluid.layers.reshape( init_cell, shape=[self.num_layers, -1, self.hidden_size]) x_emb = self.embedding(input) x_emb = fluid.layers.reshape( x_emb, shape=[-1, self.num_steps, self.hidden_size]) if self.dropout is not None and self.dropout > 0.0: x_emb = fluid.layers.dropout( x_emb, dropout_prob=self.dropout, dropout_implementation='upscale_in_train') rnn_out, last_hidden, last_cell = self.simple_lstm_rnn(x_emb, init_h, init_c) projection = fluid.layers.matmul(rnn_out, self.softmax_weight) projection = fluid.layers.elementwise_add(projection, self.softmax_bias) loss = fluid.layers.softmax_with_cross_entropy( logits=projection, label=label, soft_label=False) loss = fluid.layers.reshape(loss, shape=[-1, self.num_steps]) loss = fluid.layers.reduce_mean(loss, dim=[0]) loss = fluid.layers.reduce_sum(loss) return loss, last_hidden, last_cell def debug_emb(self): np.save("emb_grad", self.x_emb.gradient()) def train_ptb_lm(): args = parse_args() # check if set use_gpu=True in paddlepaddle cpu version model_check.check_cuda(args.use_gpu) place = core.CPUPlace() if args.use_gpu: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) # check if paddlepaddle version is satisfied model_check.check_version() model_type = args.model_type vocab_size = 10000 if model_type == "test": num_layers = 1 batch_size = 2 hidden_size = 10 num_steps = 3 init_scale = 0.1 max_grad_norm = 5.0 epoch_start_decay = 1 max_epoch = 1 dropout = 0.0 lr_decay = 0.5 base_learning_rate = 1.0 elif model_type == "small": num_layers = 2 batch_size = 20 hidden_size = 200 num_steps = 20 init_scale = 0.1 max_grad_norm = 5.0 epoch_start_decay = 4 max_epoch = 13 dropout = 0.0 lr_decay = 0.5 base_learning_rate = 1.0 elif model_type == "medium": num_layers = 2 batch_size = 20 hidden_size = 650 num_steps = 35 init_scale = 0.05 max_grad_norm = 5.0 epoch_start_decay = 6 max_epoch = 39 dropout = 0.5 lr_decay = 0.8 base_learning_rate = 1.0 elif model_type == "large": num_layers = 2 batch_size = 20 hidden_size = 1500 num_steps = 35 init_scale = 0.04 max_grad_norm = 10.0 epoch_start_decay = 14 max_epoch = 55 dropout = 0.65 lr_decay = 1.0 / 1.15 base_learning_rate = 1.0 else: print("model type not support") return with fluid.dygraph.guard(place): if args.ce: print("ce mode") seed = 33 np.random.seed(seed) fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed max_epoch = 1 ptb_model = PtbModel( hidden_size=hidden_size, vocab_size=vocab_size, num_layers=num_layers, num_steps=num_steps, init_scale=init_scale, dropout=dropout) if args.init_from_pretrain_model: if not os.path.exists(args.init_from_pretrain_model + '.pdparams'): print(args.init_from_pretrain_model) raise Warning("The pretrained params do not exist.") return fluid.load_dygraph(args.init_from_pretrain_model) print("finish initing model from pretrained params from %s" % (args.init_from_pretrain_model)) dy_param_updated = dict() dy_param_init = dict() dy_loss = None last_hidden = None last_cell = None data_path = args.data_path print("begin to load data") ptb_data = reader.get_ptb_data(data_path) print("finished load data") train_data, valid_data, test_data = ptb_data batch_len = len(train_data) // batch_size total_batch_size = (batch_len - 1) // num_steps log_interval = 200 bd = [] lr_arr = [1.0] for i in range(1, max_epoch): bd.append(total_batch_size * i) new_lr = base_learning_rate * (lr_decay** max(i + 1 - epoch_start_decay, 0.0)) lr_arr.append(new_lr) grad_clip = fluid.clip.GradientClipByGlobalNorm(max_grad_norm) sgd = SGDOptimizer( learning_rate=fluid.layers.piecewise_decay(boundaries=bd, values=lr_arr), parameter_list=ptb_model.parameters(), grad_clip=grad_clip) def eval(model, data): print("begin to eval") total_loss = 0.0 iters = 0.0 init_hidden_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') init_cell_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') model.eval() train_data_iter = reader.get_data_iter(data, batch_size, num_steps) for batch_id, batch in enumerate(train_data_iter): x_data, y_data = batch x_data = x_data.reshape((-1, num_steps, 1)) y_data = y_data.reshape((-1, num_steps, 1)) x = to_variable(x_data) y = to_variable(y_data) init_hidden = to_variable(init_hidden_data) init_cell = to_variable(init_cell_data) dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden, init_cell) out_loss = dy_loss.numpy() init_hidden_data = last_hidden.numpy() init_cell_data = last_cell.numpy() total_loss += out_loss iters += num_steps print("eval finished") ppl = np.exp(total_loss / iters) print("ppl ", batch_id, ppl[0]) ce_time = [] ce_ppl = [] total_batch_num = 0 #this is for benchmark for epoch_id in range(max_epoch): ptb_model.train() total_loss = 0.0 iters = 0.0 init_hidden_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') init_cell_data = np.zeros( (num_layers, batch_size, hidden_size), dtype='float32') train_data_iter = reader.get_data_iter(train_data, batch_size, num_steps) init_hidden = to_variable(init_hidden_data) init_cell = to_variable(init_cell_data) start_time = time.time() for batch_id, batch in enumerate(train_data_iter): if args.max_iter and total_batch_num == args.max_iter: return batch_start = time.time() x_data, y_data = batch x_data = x_data.reshape((-1, num_steps, 1)) y_data = y_data.reshape((-1, num_steps, 1)) x = to_variable(x_data) y = to_variable(y_data) dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden, init_cell) init_hidden = last_hidden.detach() init_cell = last_cell.detach() out_loss = dy_loss.numpy() dy_loss.backward() sgd.minimize(dy_loss) ptb_model.clear_gradients() total_loss += out_loss batch_end = time.time() train_batch_cost = batch_end - batch_start iters += num_steps total_batch_num = total_batch_num + 1 #this is for benchmark if batch_id > 0 and batch_id % log_interval == 0: ppl = np.exp(total_loss / iters) print("-- Epoch:[%d]; Batch:[%d]; ppl: %.5f, lr: %.5f, loss: %.5f, batch cost: %.5f" % (epoch_id, batch_id, ppl[0], sgd._global_learning_rate().numpy(), out_loss, train_batch_cost)) print("one epoch finished", epoch_id) print("time cost ", time.time() - start_time) ppl = np.exp(total_loss / iters) ce_time.append(time.time() - start_time) ce_ppl.append(ppl[0]) print("-- Epoch:[%d]; ppl: %.5f" % (epoch_id, ppl[0])) if batch_size <= 20 and epoch_id == 0 and ppl[0] > 1000: # for bad init, after first epoch, the loss is over 1000 # no more need to continue print("Parameters are randomly initialized and not good this time because the loss is over 1000 after the first epoch.") print("Abort this training process and please start again.") return save_model_dir = os.path.join(args.save_model_dir, str(epoch_id), 'params') fluid.save_dygraph(ptb_model.state_dict(), save_model_dir) print("Saved model to: %s.\n" % save_model_dir) eval(ptb_model, valid_data) if args.ce: _ppl = 0 _time = 0 try: _time = ce_time[-1] _ppl = ce_ppl[-1] except: print("ce info error") print("kpis\ttrain_duration_card%s\t%s" % (dev_count, _time)) print("kpis\ttrain_ppl_card%s\t%f" % (dev_count, _ppl)) eval(ptb_model, test_data) train_ptb_lm()