import numpy as np import os import paddle.fluid as fluid class CriteoDataset(object): def _reader_creator(self, file): def reader(): with open(file, 'r') as f: for i,line in enumerate(f): if i == 0: continue line = line.strip().split(',') features = list(map(float, line)) wide_feat = features[0:8] deep_feat = features[8:58+8] label = features[-1] output = [] output.append(wide_feat) output.append(deep_feat) output.append([label]) yield output return reader def train(self, file): return self._reader_creator(file) def test(self, file): return self._reader_creator(file)