# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import argparse import json import yaml import six import logging logging_only_message = "%(message)s" logging_details = "%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s" class JsonConfig(object): """ A high-level api for handling json configure file. """ def __init__(self, config_path): self._config_dict = self._parse(config_path) def _parse(self, config_path): try: with open(config_path) as json_file: config_dict = json.load(json_file) except: raise IOError("Error in parsing bert model config file '%s'" % config_path) else: return config_dict def __getitem__(self, key): return self._config_dict[key] def print_config(self): for arg, value in sorted(six.iteritems(self._config_dict)): print('%s: %s' % (arg, value)) print('------------------------------------------------') class ArgumentGroup(object): def __init__(self, parser, title, des): self._group = parser.add_argument_group(title=title, description=des) def add_arg(self, name, type, default, help, **kwargs): type = str2bool if type == bool else type self._group.add_argument( "--" + name, default=default, type=type, help=help + ' Default: %(default)s.', **kwargs) class ArgConfig(object): """ A high-level api for handling argument configs. """ def __init__(self): parser = argparse.ArgumentParser() train_g = ArgumentGroup(parser, "training", "training options.") train_g.add_arg("epoch", int, 3, "Number of epoches for fine-tuning.") train_g.add_arg("learning_rate", float, 5e-5, "Learning rate used to train with warmup.") train_g.add_arg( "lr_scheduler", str, "linear_warmup_decay", "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay']) train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.") train_g.add_arg( "warmup_proportion", float, 0.1, "Proportion of training steps to perform linear learning rate warmup for." ) train_g.add_arg("save_steps", int, 1000, "The steps interval to save checkpoints.") train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.") train_g.add_arg( "loss_scaling", float, 1.0, "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled." ) train_g.add_arg("pred_dir", str, None, "Path to save the prediction results") log_g = ArgumentGroup(parser, "logging", "logging related.") log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.") log_g.add_arg("verbose", bool, False, "Whether to output verbose log.") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") run_type_g.add_arg( "use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).") run_type_g.add_arg( "num_iteration_per_drop_scope", int, 1, "Ihe iteration intervals to clean up temporary variables.") run_type_g.add_arg("do_train", bool, True, "Whether to perform training.") run_type_g.add_arg("do_predict", bool, True, "Whether to perform prediction.") custom_g = ArgumentGroup(parser, "customize", "customized options.") self.custom_g = custom_g self.parser = parser def add_arg(self, name, dtype, default, descrip): self.custom_g.add_arg(name, dtype, default, descrip) def build_conf(self): return self.parser.parse_args() def str2bool(v): # because argparse does not support to parse "true, False" as python # boolean directly return v.lower() in ("true", "t", "1") def print_arguments(args, log=None): if not log: print('----------- Configuration Arguments -----------') for arg, value in sorted(six.iteritems(vars(args))): print('%s: %s' % (arg, value)) print('------------------------------------------------') else: log.info('----------- Configuration Arguments -----------') for arg, value in sorted(six.iteritems(vars(args))): log.info('%s: %s' % (arg, value)) log.info('------------------------------------------------') class PDConfig(object): """ A high-level API for managing configuration files in PaddlePaddle. Can jointly work with command-line-arugment, json files and yaml files. """ def __init__(self, json_file="", yaml_file="", fuse_args=True): """ Init funciton for PDConfig. json_file: the path to the json configure file. yaml_file: the path to the yaml configure file. fuse_args: if fuse the json/yaml configs with argparse. """ assert isinstance(json_file, str) assert isinstance(yaml_file, str) if json_file != "" and yaml_file != "": raise Warning( "json_file and yaml_file can not co-exist for now. please only use one configure file type." ) return self.args = None self.arg_config = {} self.json_config = {} self.yaml_config = {} parser = argparse.ArgumentParser() self.default_g = ArgumentGroup(parser, "default", "default options.") self.yaml_g = ArgumentGroup(parser, "yaml", "options from yaml.") self.json_g = ArgumentGroup(parser, "json", "options from json.") self.com_g = ArgumentGroup(parser, "custom", "customized options.") self.default_g.add_arg("do_train", bool, False, "Whether to perform training.") self.default_g.add_arg("do_predict", bool, False, "Whether to perform predicting.") self.default_g.add_arg("do_eval", bool, False, "Whether to perform evaluating.") self.default_g.add_arg("do_save_inference_model", bool, False, "Whether to perform model saving for inference.") self.parser = parser if json_file != "": self.load_json(json_file, fuse_args=fuse_args) if yaml_file: self.load_yaml(yaml_file, fuse_args=fuse_args) def load_json(self, file_path, fuse_args=True): if not os.path.exists(file_path): raise Warning("the json file %s does not exist." % file_path) return with open(file_path, "r") as fin: self.json_config = json.loads(fin.read()) fin.close() if fuse_args: for name in self.json_config: if isinstance(self.json_config[name], list): self.json_g.add_arg( name, type(self.json_config[name][0]), self.json_config[name], "This is from %s" % file_path, nargs=len(self.json_config[name])) continue if not isinstance(self.json_config[name], int) \ and not isinstance(self.json_config[name], float) \ and not isinstance(self.json_config[name], str) \ and not isinstance(self.json_config[name], bool): continue self.json_g.add_arg(name, type(self.json_config[name]), self.json_config[name], "This is from %s" % file_path) def load_yaml(self, file_path, fuse_args=True): if not os.path.exists(file_path): raise Warning("the yaml file %s does not exist." % file_path) return with open(file_path, "r") as fin: self.yaml_config = yaml.load(fin, Loader=yaml.SafeLoader) fin.close() if fuse_args: for name in self.yaml_config: if isinstance(self.yaml_config[name], list): self.yaml_g.add_arg( name, type(self.yaml_config[name][0]), self.yaml_config[name], "This is from %s" % file_path, nargs=len(self.yaml_config[name])) continue if not isinstance(self.yaml_config[name], int) \ and not isinstance(self.yaml_config[name], float) \ and not isinstance(self.yaml_config[name], str) \ and not isinstance(self.yaml_config[name], bool): continue self.yaml_g.add_arg(name, type(self.yaml_config[name]), self.yaml_config[name], "This is from %s" % file_path) def build(self): self.args = self.parser.parse_args() self.arg_config = vars(self.args) def __add__(self, new_arg): assert isinstance(new_arg, list) or isinstance(new_arg, tuple) assert len(new_arg) >= 3 assert self.args is None name = new_arg[0] dtype = new_arg[1] dvalue = new_arg[2] desc = new_arg[3] if len( new_arg) == 4 else "Description is not provided." self.com_g.add_arg(name, dtype, dvalue, desc) return self def __getattr__(self, name): if name in self.arg_config: return self.arg_config[name] if name in self.json_config: return self.json_config[name] if name in self.yaml_config: return self.yaml_config[name] raise Warning("The argument %s is not defined." % name) def Print(self): print("-" * 70) for name in self.arg_config: print("%s:\t\t\t\t%s" % (str(name), str(self.arg_config[name]))) for name in self.json_config: if name not in self.arg_config: print("%s:\t\t\t\t%s" % (str(name), str(self.json_config[name]))) for name in self.yaml_config: if name not in self.arg_config: print("%s:\t\t\t\t%s" % (str(name), str(self.yaml_config[name]))) print("-" * 70) if __name__ == "__main__": """ pd_config = PDConfig(json_file = "./test/bert_config.json") pd_config.build() print(pd_config.do_train) print(pd_config.hidden_size) pd_config = PDConfig(yaml_file = "./test/bert_config.yaml") pd_config.build() print(pd_config.do_train) print(pd_config.hidden_size) """ pd_config = PDConfig(yaml_file="./test/bert_config.yaml") pd_config += ("my_age", int, 18, "I am forever 18.") pd_config.build() print(pd_config.do_train) print(pd_config.hidden_size) print(pd_config.my_age)