# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Copy-paste from PaddleSeg with minor modifications. https://github.com/PaddlePaddle/PaddleSeg/blob/release/2.1/val.py """ import argparse import os import paddle from smoke.cvlibs import manager, Config from smoke.core import evaluate from smoke.utils import logger, load_pretrained_model def parse_args(): parser = argparse.ArgumentParser(description='Model evaluation') # params of evaluate parser.add_argument( "--config", dest="cfg", help="The config file.", default=None, required=True, type=str) parser.add_argument( '--model_path', dest='model_path', help='The path of model for evaluation', type=str, default=None) parser.add_argument( '--num_workers', dest='num_workers', help='Num workers for data loader', type=int, default=0) parser.add_argument( '--output_dir', dest='output_dir', help='The directory for saving the evaluation results', type=str, default='./output') return parser.parse_args() def main(args): paddle.set_device("gpu") cfg = Config(args.cfg) val_dataset = cfg.val_dataset if val_dataset is None: raise RuntimeError( 'The verification dataset is not specified in the configuration file.' ) elif len(val_dataset) == 0: raise ValueError( 'The length of val_dataset is 0. Please check if your dataset is valid' ) msg = '\n---------------Config Information---------------\n' msg += str(cfg) msg += '------------------------------------------------' logger.info(msg) model = cfg.model if args.model_path: load_pretrained_model(model, args.model_path) logger.info('Loaded trained params of model successfully') evaluate( model, val_dataset, num_workers=args.num_workers, output_dir=args.output_dir ) if __name__ == '__main__': args = parse_args() main(args)