# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import cv2 import numpy as np import paddle from smoke.cvlibs import Config from smoke.utils import logger, load_pretrained_model from smoke.utils.vis_utils import get_img, get_ratio, encode_box3d, draw_box_3d def parse_args(): parser = argparse.ArgumentParser(description='Model test') # params of evaluate parser.add_argument( "--config", dest="cfg", help="The config file.", required=True, type=str) parser.add_argument( '--model_path', dest='model_path', help='The path of model for evaluation', type=str, required=True) parser.add_argument( '--input_path', dest='input_path', help='The image path', type=str, required=True) parser.add_argument( '--output_path', dest='output_path', help='The result path of image', type=str, required=True) return parser.parse_args() def main(args): paddle.set_device("gpu") cfg = Config(args.cfg) model = cfg.model model.eval() if args.model_path: load_pretrained_model(model, args.model_path) logger.info('Loaded trained params of model successfully') K = np.array([[[2055.56, 0, 939.658], [0, 2055.56, 641.072], [0, 0, 1]]], np.float32) K_inverse = np.linalg.inv(K) K_inverse = paddle.to_tensor(K_inverse) img, ori_img_size, output_size = get_img(args.input_path) ratio = get_ratio(ori_img_size, output_size) ratio = paddle.to_tensor(ratio) cam_info = [K_inverse, ratio] total_pred = model(img, cam_info) keep_idx = paddle.nonzero(total_pred[:, -1] > 0.25) total_pred = paddle.gather(total_pred, keep_idx) if total_pred.shape[0] > 0: pred_dimensions = total_pred[:, 6:9] pred_dimensions = pred_dimensions.roll(shifts=1, axis=1) pred_rotys = total_pred[:, 12] pred_locations = total_pred[:, 9:12] bbox_3d = encode_box3d(pred_rotys, pred_dimensions, pred_locations, paddle.to_tensor(K), (1280, 1920)) else: bbox_3d = total_pred img_draw = cv2.imread(args.input_path) for idx in range(bbox_3d.shape[0]): bbox = bbox_3d[idx] bbox = bbox.transpose([1,0]).numpy() img_draw = draw_box_3d(img_draw, bbox) cv2.imwrite(args.output_path, img_draw) if __name__ == '__main__': args = parse_args() main(args)