# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import paddle from smoke.cvlibs import Config from smoke.utils import load_pretrained_model def parse_args(): parser = argparse.ArgumentParser(description='Model Export') # params of evaluate parser.add_argument( "--config", dest="cfg", help="The config file.", required=True, type=str) parser.add_argument( '--model_path', dest='model_path', help='The path of model for evaluation', type=str, required=True) parser.add_argument( '--output_dir', dest='output_dir', help='The directory saving inference params.', type=str, default="./deploy") return parser.parse_args() def main(args): cfg = Config(args.cfg) model = cfg.model model.eval() load_pretrained_model(model, args.model_path) model = paddle.jit.to_static(model, input_spec=[ paddle.static.InputSpec( shape=[1, 3, None, None], dtype="float32", ), [ paddle.static.InputSpec( shape=[1, 3, 3], dtype="float32" ), paddle.static.InputSpec( shape=[1, 2], dtype="float32" ) ] ] ) paddle.jit.save(model, os.path.join(args.output_dir, "inference")) if __name__ == '__main__': args = parse_args() main(args)