{ "cells": [ { "cell_type": "markdown", "id": "a09f5723", "metadata": {}, "source": [ "## SPECTER\n", "\n", "SPECTER is a pre-trained language model to generate document-level embedding of documents. It is pre-trained on a a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning.\n", "\n", "Paper: [SPECTER: Document-level Representation Learning using Citation-informed Transformers](https://arxiv.org/pdf/2004.07180.pdf)\n", "\n", "Original Repo: [Github](https://github.com/allenai/specter)\n", "\n", "Evaluation Benchmark: [SciDocs](https://github.com/allenai/scidocs)\n", "\n", "Authors: *Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, Daniel S. Weld*" ] }, { "cell_type": "markdown", "id": "b62bbb59", "metadata": {}, "source": [ "## How to Use" ] }, { "cell_type": "code", "execution_count": null, "id": "2dff923a", "metadata": {}, "outputs": [], "source": [ "!pip install --upgrade paddlenlp" ] }, { "cell_type": "code", "execution_count": null, "id": "e60739cc", "metadata": {}, "outputs": [], "source": [ "import paddle\n", "from paddlenlp.transformers import BertModel\n", "\n", "model = BertModel.from_pretrained(\"allenai/specter\")\n", "input_ids = paddle.randint(100, 200, shape=[1, 20])\n", "print(model(input_ids))" ] }, { "cell_type": "markdown", "id": "cd668864", "metadata": {}, "source": [ "## Reference\n", "\n", "> The model introduction and model weights originate from [https://huggingface.co/allenai/specter](https://huggingface.co/allenai/specter) and were converted to PaddlePaddle format for ease of use in PaddleNLP." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.13" } }, "nbformat": 4, "nbformat_minor": 5 }