import os import time import numpy as np import paddle import paddle.fluid as fluid import box_utils import reader from utility import print_arguments, parse_args import models # from coco_reader import load_label_names import json from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval, Params from config.config import cfg def infer(): if not os.path.exists('output'): os.mkdir('output') model = models.YOLOv3(cfg.model_cfg_path, is_train=False) model.build_model() outputs = model.get_pred() input_size = model.get_input_size() yolo_anchors = model.get_yolo_anchors() yolo_classes = model.get_yolo_classes() place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # yapf: disable if cfg.weights: def if_exist(var): return os.path.exists(os.path.join(cfg.weights, var.name)) fluid.io.load_vars(exe, cfg.weights, predicate=if_exist) # yapf: enable feeder = fluid.DataFeeder(place=place, feed_list=model.feeds()) fetch_list = [outputs] image_names = [] if cfg.image_name is not None: image_names.append(cfg.image_name) else: for image_name in os.listdir(cfg.image_path): if image_name.split('.')[-1] in ['jpg', 'png']: image_names.append(image_name) for image_name in image_names: infer_reader = reader.infer(input_size, os.path.join(cfg.image_path, image_name)) label_names, _ = reader.get_label_infos() data = next(infer_reader()) im_shape = data[0][2] outputs = exe.run( fetch_list=[v.name for v in fetch_list], feed=feeder.feed(data), return_numpy=False) bboxes = np.array(outputs[0]) if bboxes.shape[1] != 6: print("No object found in {}".format(image_name)) continue labels = bboxes[:, 0].astype('int32') scores = bboxes[:, 1].astype('float32') boxes = bboxes[:, 2:].astype('float32') path = os.path.join(cfg.image_path, image_name) box_utils.draw_boxes_on_image(path, boxes, scores, labels, label_names, cfg.draw_thresh) if __name__ == '__main__': args = parse_args() print_arguments(args) infer()