import net import numpy as np import paddle.fluid as fluid def gen_data(dict_dim=100, class_size=2, batch_size=32, max_len=10): return { "input": np.random.randint( dict_dim, size=(batch_size, max_len)).astype('int64'), "seq_len": np.random.randint( 1, high=max_len, size=(batch_size)).astype('int64'), "label": np.random.randint( class_size, size=(batch_size, 1)).astype('int64') } main_program = fluid.default_startup_program() startup_program = fluid.default_main_program() dict_dim = 100 with fluid.program_guard(main_program, startup_program): cost = net.cnn_net(dict_dim=dict_dim) optimizer = fluid.optimizer.SGD(learning_rate=0.01) optimizer.minimize(cost) exe = fluid.Executor(fluid.CPUPlace()) exe.run(startup_program) step = 100 for i in range(step): cost_val = exe.run(main_program, feed=gen_data(), fetch_list=[cost.name]) print("step%d cost=%f" % (i, cost_val[0]))