# MIT License # # Copyright (c) 2018 Tom Runia # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to conditions. # # Author: Tom Runia # Date Created: 2018-08-03 from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np def make_colorwheel(): ''' Generates a color wheel for optical flow visualization as presented in: Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun ''' RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros((ncols, 3)) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) col = col+RY # YG colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) colorwheel[col:col+YG, 1] = 255 col = col+YG # GC colorwheel[col:col+GC, 1] = 255 colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) col = col+GC # CB colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) colorwheel[col:col+CB, 2] = 255 col = col+CB # BM colorwheel[col:col+BM, 2] = 255 colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) col = col+BM # MR colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) colorwheel[col:col+MR, 0] = 255 return colorwheel def flow_compute_color(u, v, convert_to_bgr=False): ''' Applies the flow color wheel to (possibly clipped) flow components u and v. According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param u: np.ndarray, input horizontal flow :param v: np.ndarray, input vertical flow :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB :return: ''' flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) colorwheel = make_colorwheel() # shape [55x3] ncols = colorwheel.shape[0] rad = np.sqrt(np.square(u) + np.square(v)) a = np.arctan2(-v, -u)/np.pi fk = (a+1) / 2*(ncols-1) k0 = np.floor(fk).astype(np.int32) k1 = k0 + 1 k1[k1 == ncols] = 0 f = fk - k0 for i in range(colorwheel.shape[1]): tmp = colorwheel[:,i] col0 = tmp[k0] / 255.0 col1 = tmp[k1] / 255.0 col = (1-f)*col0 + f*col1 idx = (rad <= 1) col[idx] = 1 - rad[idx] * (1-col[idx]) col[~idx] = col[~idx] * 0.75 # out of range? # Note the 2-i => BGR instead of RGB ch_idx = 2-i if convert_to_bgr else i flow_image[:,:,ch_idx] = np.floor(255 * col) return flow_image def flow_to_color(flow_uv, clip_flow=None, convert_to_bgr=False): ''' Expects a two dimensional flow image of shape [H,W,2] According to the C++ source code of Daniel Scharstein According to the Matlab source code of Deqing Sun :param flow_uv: np.ndarray of shape [H,W,2] :param clip_flow: float, maximum clipping value for flow :return: ''' assert flow_uv.ndim == 3, 'input flow must have three dimensions' assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' if clip_flow is not None: flow_uv = np.clip(flow_uv, 0, clip_flow) u = flow_uv[:,:,0] v = flow_uv[:,:,1] rad = np.sqrt(np.square(u) + np.square(v)) rad_max = np.max(rad) epsilon = 1e-5 u = u / (rad_max + epsilon) v = v / (rad_max + epsilon) return flow_compute_color(u, v, convert_to_bgr) def read_flow(filename): """ https://github.com/sampepose/flownet2-tf/blob/master/src/flowlib.py read optical flow from Middlebury .flo file :param filename: name of the flow file :return: optical flow data in matrix """ f = open(filename, 'rb') magic = np.fromfile(f, np.float32, count=1) data2d = None if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) print("Reading %d x %d flo file" % (h, w)) data2d = np.fromfile(f, np.float32, count=2 * w[0] * h[0]) # reshape data into 3D array (columns, rows, channels) data2d = np.resize(data2d, (h[0], w[0], 2)) f.close() return data2d