import numpy as np TAG_CHAR = np.array([202021.25], np.float32) def readFlow(fn): """ Read .flo file in Middlebury format""" # Code adapted from: # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures (eg Intel x86) only! # print 'fn = %s'%(fn) with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) # print 'Reading %d x %d flo file\n' % (w, h) data = np.fromfile(f, np.float32, count=2 * int(w) * int(h)) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) return np.resize(data, (int(h), int(w), 2)) def writeFlow(filename, uv, v=None): """ Write optical flow to file. If v is None, uv is assumed to contain both u and v channels, stacked in depth. Original code by Deqing Sun, adapted from Daniel Scharstein. """ nBands = 2 if v is None: assert (uv.ndim == 3) assert (uv.shape[2] == 2) u = uv[:, :, 0] v = uv[:, :, 1] else: u = uv assert (u.shape == v.shape) height, width = u.shape f = open(filename, 'wb') # write the header f.write(TAG_CHAR) np.array(width).astype(np.int32).tofile(f) np.array(height).astype(np.int32).tofile(f) # arrange into matrix form tmp = np.zeros((height, width * nBands)) tmp[:, np.arange(width) * 2] = u tmp[:, np.arange(width) * 2 + 1] = v tmp.astype(np.float32).tofile(f) f.close()