# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import numpy as np import argparse import functools from PIL import Image from PIL import ImageDraw from PIL import ImageFont import paddle import paddle.fluid as fluid import reader from mobilenet_ssd import build_mobilenet_ssd from utility import add_arguments, print_arguments, check_cuda parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('dataset', str, 'pascalvoc', "coco and pascalvoc.") add_arg('use_gpu', bool, True, "Whether use GPU.") add_arg('image_path', str, '', "The image used to inference and visualize.") add_arg('model_dir', str, '', "The model path.") add_arg('nms_threshold', float, 0.45, "NMS threshold.") add_arg('confs_threshold', float, 0.5, "Confidence threshold to draw bbox.") add_arg('resize_h', int, 300, "The resized image height.") add_arg('resize_w', int, 300, "The resized image height.") add_arg('mean_value_B', float, 127.5, "Mean value for B channel which will be subtracted.") #123.68 add_arg('mean_value_G', float, 127.5, "Mean value for G channel which will be subtracted.") #116.78 add_arg('mean_value_R', float, 127.5, "Mean value for R channel which will be subtracted.") #103.94 # yapf: enable def infer(args, data_args, image_path, model_dir): image_shape = [3, data_args.resize_h, data_args.resize_w] if 'coco' in data_args.dataset: num_classes = 91 # cocoapi from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval label_fpath = os.path.join(data_dir, label_file) coco = COCO(label_fpath) category_ids = coco.getCatIds() label_list = { item['id']: item['name'] for item in coco.loadCats(category_ids) } label_list[0] = ['background'] elif 'pascalvoc' in data_args.dataset: num_classes = 21 label_list = data_args.label_list image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') locs, confs, box, box_var = build_mobilenet_ssd(image, num_classes, image_shape) nmsed_out = fluid.layers.detection_output( locs, confs, box, box_var, nms_threshold=args.nms_threshold) place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # yapf: disable if model_dir: def if_exist(var): return os.path.exists(os.path.join(model_dir, var.name)) fluid.io.load_vars(exe, model_dir, predicate=if_exist) # yapf: enable infer_reader = reader.infer(data_args, image_path) feeder = fluid.DataFeeder(place=place, feed_list=[image]) data = infer_reader() # switch network to test mode (i.e. batch norm test mode) test_program = fluid.default_main_program().clone(for_test=True) nmsed_out_v, = exe.run(test_program, feed=feeder.feed([[data]]), fetch_list=[nmsed_out], return_numpy=False) nmsed_out_v = np.array(nmsed_out_v) draw_bounding_box_on_image(image_path, nmsed_out_v, args.confs_threshold, label_list) def draw_bounding_box_on_image(image_path, nms_out, confs_threshold, label_list): image = Image.open(image_path) draw = ImageDraw.Draw(image) im_width, im_height = image.size for dt in nms_out: if dt[1] < confs_threshold: continue category_id = dt[0] bbox = dt[2:] xmin, ymin, xmax, ymax = clip_bbox(dt[2:]) (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line( [(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=4, fill='red') if image.mode == 'RGB': draw.text((left, top), label_list[int(category_id)], (255, 255, 0)) image_name = image_path.split('/')[-1] print("image with bbox drawed saved as {}".format(image_name)) image.save(image_name) def clip_bbox(bbox): xmin = max(min(bbox[0], 1.), 0.) ymin = max(min(bbox[1], 1.), 0.) xmax = max(min(bbox[2], 1.), 0.) ymax = max(min(bbox[3], 1.), 0.) return xmin, ymin, xmax, ymax if __name__ == '__main__': args = parser.parse_args() print_arguments(args) check_cuda(args.use_gpu) data_dir = 'data/pascalvoc' label_file = 'label_list' if not os.path.exists(args.model_dir): raise ValueError("The model path [%s] does not exist." % (args.model_dir)) if 'coco' in args.dataset: data_dir = 'data/coco' label_file = 'annotations/instances_val2014.json' data_args = reader.Settings( dataset=args.dataset, data_dir=data_dir, label_file=label_file, resize_h=args.resize_h, resize_w=args.resize_w, mean_value=[args.mean_value_B, args.mean_value_G, args.mean_value_R], apply_distort=False, apply_expand=False, ap_version='') infer( args, data_args=data_args, image_path=args.image_path, model_dir=args.model_dir)