# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np import xml.etree.ElementTree import os import time import copy import six import cv2 from collections import deque from roidbs import JsonDataset import data_utils from config import cfg import segm_utils num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) def roidb_reader(roidb, mode): im, im_scales = data_utils.get_image_blob(roidb, mode) im_id = roidb['id'] im_height = np.round(roidb['height'] * im_scales) im_width = np.round(roidb['width'] * im_scales) im_info = np.array([im_height, im_width, im_scales], dtype=np.float32) if mode == 'val': return im, im_info, im_id gt_boxes = roidb['gt_boxes'].astype('float32') gt_classes = roidb['gt_classes'].astype('int32') is_crowd = roidb['is_crowd'].astype('int32') segms = roidb['segms'] outs = (im, gt_boxes, gt_classes, is_crowd, im_info, im_id) if cfg.MASK_ON: gt_masks = [] valid = True segms = roidb['segms'] assert len(segms) == is_crowd.shape[0] for i in range(len(roidb['segms'])): segm, iscrowd = segms[i], is_crowd[i] gt_segm = [] if iscrowd: gt_segm.append([[0, 0]]) else: for poly in segm: if len(poly) == 0: valid = False break gt_segm.append(np.array(poly).reshape(-1, 2)) if (not valid) or len(gt_segm) == 0: break gt_masks.append(gt_segm) outs = outs + (gt_masks, ) return outs def coco(mode, batch_size=None, total_batch_size=None, padding_total=False, shuffle=False, shuffle_seed=None): total_batch_size = total_batch_size if total_batch_size else batch_size assert total_batch_size % batch_size == 0 json_dataset = JsonDataset(mode) roidbs = json_dataset.get_roidb() print("{} on {} with {} roidbs".format(mode, cfg.dataset, len(roidbs))) def padding_minibatch(batch_data): if len(batch_data) == 1: return batch_data max_shape = np.array([data[0].shape for data in batch_data]).max(axis=0) padding_batch = [] for data in batch_data: im_c, im_h, im_w = data[0].shape[:] padding_im = np.zeros( (im_c, max_shape[1], max_shape[2]), dtype=np.float32) padding_im[:, :im_h, :im_w] = data[0] padding_batch.append((padding_im, ) + data[1:]) return padding_batch def reader(): if mode == "train": if shuffle: if shuffle_seed is not None: np.random.seed(shuffle_seed) roidb_perm = deque(np.random.permutation(roidbs)) else: roidb_perm = deque(roidbs) roidb_cur = 0 count = 0 batch_out = [] device_num = total_batch_size / batch_size while True: roidb = roidb_perm[0] roidb_cur += 1 roidb_perm.rotate(-1) if roidb_cur >= len(roidbs): if shuffle: roidb_perm = deque(np.random.permutation(roidbs)) else: roidb_perm = deque(roidbs) roidb_cur = 0 # im, gt_boxes, gt_classes, is_crowd, im_info, im_id, gt_masks datas = roidb_reader(roidb, mode) if datas[1].shape[0] == 0: continue if cfg.MASK_ON: if len(datas[-1]) != datas[1].shape[0]: continue batch_out.append(datas) if not padding_total: if len(batch_out) == batch_size: yield padding_minibatch(batch_out) count += 1 batch_out = [] else: if len(batch_out) == total_batch_size: batch_out = padding_minibatch(batch_out) for i in range(device_num): sub_batch_out = [] for j in range(batch_size): sub_batch_out.append(batch_out[i * batch_size + j]) yield sub_batch_out count += 1 sub_batch_out = [] batch_out = [] iter_id = count // device_num if iter_id >= cfg.max_iter * num_trainers: return elif mode == "val": batch_out = [] for roidb in roidbs: im, im_info, im_id = roidb_reader(roidb, mode) batch_out.append((im, im_info, im_id)) if len(batch_out) == batch_size: yield batch_out batch_out = [] if len(batch_out) != 0: yield batch_out return reader def train(batch_size, total_batch_size=None, padding_total=False, shuffle=True, shuffle_seed=None): return coco( 'train', batch_size, total_batch_size, padding_total, shuffle=shuffle, shuffle_seed=shuffle_seed) def test(batch_size, total_batch_size=None, padding_total=False): return coco('val', batch_size, total_batch_size, shuffle=False) def infer(file_path): def reader(): if not os.path.exists(file_path): raise ValueError("Image path [%s] does not exist." % (file_path)) im = cv2.imread(file_path) im = im.astype(np.float32, copy=False) im -= cfg.pixel_means im_height, im_width, channel = im.shape channel_swap = (2, 0, 1) #(channel, height, width) im = im.transpose(channel_swap) im_info = np.array([im_height, im_width, 1.0], dtype=np.float32) yield [(im, im_info)] return reader