# -*- coding: utf-8 -*- # Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import random import paddle import numpy as np from PIL import Image from utils.voc import VOC __all__ = ['voc_train', 'voc_val', 'voc_train_val', 'voc_test'] # globals data_mean = np.array([0.485, 0.456, 0.406]).reshape(3, 1, 1) data_std = np.array([0.229, 0.224, 0.225]).reshape(3, 1, 1) def mapper_train(sample): image_path, label_path, voc = sample image = Image.open(image_path, mode='r').convert('RGB') label = Image.open(label_path, mode='r') image, label = voc.sync_transform(image, label) image_array = np.array(image) # HWC label_array = np.array(label) # HW image_array = image_array.transpose((2, 0, 1)) # CHW image_array = image_array / 255.0 image_array = (image_array - data_mean) / data_std image_array = image_array.astype('float32') label_array = label_array.astype('int64') return image_array, label_array def mapper_val(sample): image_path, label_path, city = sample image = Image.open(image_path, mode='r').convert('RGB') label = Image.open(label_path, mode='r') image, label = city.sync_val_transform(image, label) image_array = np.array(image) label_array = np.array(label) image_array = image_array.transpose((2, 0, 1)) image_array = image_array / 255.0 image_array = (image_array - data_mean) / data_std image_array = image_array.astype('float32') label_array = label_array.astype('int64') return image_array, label_array def mapper_test(sample): image_path, label_path = sample # label is path image = Image.open(image_path, mode='r').convert('RGB') image_array = image return image_array, label_path # label is path # 已完成, 引用时记得传入参数,root, base_size, crop_size等, gpu_num必须设置,否则syncBN会出现某些卡没有数据的情况 def voc_train(data_root='../dataset', base_size=768, crop_size=576, scale=True, xmap=True, batch_size=1, gpu_num=1): voc = VOC(root=data_root, split='train', base_size=base_size, crop_size=crop_size, scale=scale) image_path, label_path = voc.get_path_pairs() def reader(): if len(image_path) % (batch_size * gpu_num) != 0: length = (len(image_path) // (batch_size * gpu_num)) * (batch_size * gpu_num) else: length = len(image_path) for i in range(length): if i == 0: cc = list(zip(image_path, label_path)) random.shuffle(cc) image_path[:], label_path[:] = zip(*cc) yield image_path[i], label_path[i], voc if xmap: return paddle.reader.xmap_readers(mapper_train, reader, 4, 32) else: return paddle.reader.map_readers(mapper_train, reader) def voc_val(data_root='../dataset', base_size=768, crop_size=576, scale=True, xmap=True): voc = VOC(root=data_root, split='val', base_size=base_size, crop_size=crop_size, scale=scale) image_path, label_path = voc.get_path_pairs() def reader(): for i in range(len(image_path)): yield image_path[i], label_path[i], voc if xmap: return paddle.reader.xmap_readers(mapper_val, reader, 4, 32) else: return paddle.reader.map_readers(mapper_val, reader) def voc_train_val(data_root='./dataset', base_size=768, crop_size=576, scale=True, xmap=True, batch_size=1, gpu_num=1): voc = VOC(root=data_root, split='train_val', base_size=base_size, crop_size=crop_size, scale=scale) image_path, label_path = voc.get_path_pairs() def reader(): if len(image_path) % (batch_size * gpu_num) != 0: length = (len(image_path) // (batch_size * gpu_num)) * (batch_size * gpu_num) else: length = len(image_path) for i in range(length): if i == 0: cc = list(zip(image_path, label_path)) random.shuffle(cc) image_path[:], label_path[:] = zip(*cc) yield image_path[i], label_path[i] if xmap: return paddle.reader.xmap_readers(mapper_train, reader, 4, 32) else: return paddle.reader.map_readers(mapper_train, reader) def voc_test(split='test', base_size=2048, crop_size=1024, scale=True, xmap=True): # 实际未使用base_size, crop_size, scale voc = VOC(split=split, base_size=base_size, crop_size=crop_size, scale=scale) image_path = voc.get_path_pairs() def reader(): for i in range(len(image_path[:1])): yield image_path[i], image_path[i] if xmap: return paddle.reader.xmap_readers(mapper_test, reader, 4, 32) else: return paddle.reader.map_readers(mapper_test, reader)