# coding: utf8 # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import sys import os import math import random import functools import io import time import codecs import numpy as np import paddle import paddle.fluid as fluid import cv2 from PIL import Image import copy from src.utils.config import cfg from src.models.model_builder import ModelPhase from .baseseg import BaseSeg class AdeSeg(BaseSeg): def __init__(self, file_list, data_dir, shuffle=False, mode=ModelPhase.TRAIN, base_size=520, crop_size=520, rand_scale=True): super(AdeSeg, self).__init__(file_list, data_dir, shuffle, mode, base_size, crop_size, rand_scale) def _mask_transform(self, mask): target = np.array(mask).astype('int32') - 1 return target def load_image(self, line, src_dir, mode=ModelPhase.TRAIN): # original image cv2.imread flag setting cv2_imread_flag = cv2.IMREAD_COLOR if cfg.DATASET.IMAGE_TYPE == "rgba": # If use RBGA 4 channel ImageType, use IMREAD_UNCHANGED flags to # reserver alpha channel cv2_imread_flag = cv2.IMREAD_UNCHANGED #print("line: ", line) parts = line.strip().split(cfg.DATASET.SEPARATOR) if len(parts) != 2: if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL: raise Exception("File list format incorrect! It should be" " image_name{}label_name\\n".format( cfg.DATASET.SEPARATOR)) img_name, grt_name = parts[0], None else: img_name, grt_name = parts[0], parts[1] img_path = os.path.join(src_dir, img_name) img = self.cv2_imread(img_path, cv2_imread_flag) if grt_name is not None: grt_path = os.path.join(src_dir, grt_name) grt = self.pil_imread(grt_path) else: grt = None if img is None: raise Exception( "Empty image, src_dir: {}, img: {} & lab: {}".format( src_dir, img_path, grt_path)) img_height = img.shape[0] img_width = img.shape[1] #print('img.shape',img.shape) if grt is not None: grt_height = grt.shape[0] grt_width = grt.shape[1] if img_height != grt_height or img_width != grt_width: raise Exception( "source img and label img must has the same size") else: if mode == ModelPhase.TRAIN or mode == ModelPhase.EVAL: raise Exception( "Empty image, src_dir: {}, img: {} & lab: {}".format( src_dir, img_path, grt_path)) if len(img.shape) < 3: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) grt = self._mask_transform(grt) return img, grt, img_name, grt_name