# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import math import glob import paddle import cv2 import json from collections import defaultdict from .base import OutputBaseOp from ppcv.utils.logger import setup_logger from ppcv.core.workspace import register from PIL import Image, ImageDraw, ImageFile logger = setup_logger('DetOutput') def get_id_color(idx): idx = idx * 3 color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) return color def get_color_map_list(num_classes): """ Args: num_classes (int): number of class Returns: color_map (list): RGB color list """ color_map = num_classes * [0, 0, 0] for i in range(0, num_classes): j = 0 lab = i while lab: color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j)) color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j)) color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j)) j += 1 lab >>= 3 color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)] return color_map def draw_det(image, dt_bboxes, dt_scores, dt_cls_names, input_id=None): im = Image.fromarray(image[:, :, ::-1]) draw_thickness = min(im.size) // 320 draw = ImageDraw.Draw(im) name_set = sorted(set(dt_cls_names)) name2clsid = {name: i for i, name in enumerate(name_set)} clsid2color = {} color_list = get_color_map_list(len(name_set)) for i in range(len(dt_bboxes)): box, score, name = dt_bboxes[i], dt_scores[i], dt_cls_names[i] if input_id is None: color = tuple(color_list[name2clsid[name]]) else: color = get_id_color(input_id[i]) xmin, ymin, xmax, ymax = box # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=draw_thickness, fill=color) # draw label text = "{} {:.4f}".format(name, score) box = draw.textbbox((xmin, ymin), text, anchor='lt') draw.rectangle(box, fill=color) draw.text((box[0], box[1]), text, fill=(255, 255, 255)) image = np.array(im) return image @register class DetOutput(OutputBaseOp): def __init__(self, model_cfg, env_cfg): super(DetOutput, self).__init__(model_cfg, env_cfg) def __call__(self, inputs): total_res = [] for res in inputs: fn, image, dt_bboxes, dt_scores, dt_cls_names = res.values() image = draw_det(image, dt_bboxes, dt_scores, dt_cls_names) res.pop('input.image') if self.frame_id != -1: res.update({'frame_id': frame_id}) logger.info(res) if self.save_img: file_name = os.path.split(fn)[-1] out_path = os.path.join(self.output_dir, file_name) logger.info('Save output image to {}'.format(out_path)) cv2.imwrite(out_path, image) if self.save_res or self.return_res: total_res.append(res) if self.save_res: res_file_name = 'det_output.json' out_path = os.path.join(self.output_dir, res_file_name) logger.info('Save output result to {}'.format(out_path)) with open(out_path, 'w') as f: json.dump(total_res, f) if self.return_res: return total_res return