# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import importlib import argparse __dir__ = os.path.dirname(__file__) sys.path.insert(0, os.path.join(__dir__, '')) import cv2 import logging import numpy as np from pathlib import Path ppcv = importlib.import_module('.', 'ppcv') tools = importlib.import_module('.', 'tools') tests = importlib.import_module('.', 'tests') VERSION = '0.1.0' import yaml from ppcv.model_zoo.model_zoo import TASK_DICT, list_model, get_config_file from ppcv.engine.pipeline import Pipeline from ppcv.utils.logger import setup_logger logger = setup_logger() class PaddleCV(object): def __init__(self, task_name=None, config_path=None, output_dir=None, run_mode='paddle', device='CPU'): if task_name is not None: assert task_name in TASK_DICT, f"task_name must be one of {list(TASK_DICT.keys())} but got {task_name}" config_path = get_config_file(task_name) else: assert config_path is not None, "task_name and config_path can not be None at the same time!!!" self.cfg_dict = dict( config=config_path, output_dir=output_dir, run_mode=run_mode, device=device) cfg = argparse.Namespace(**self.cfg_dict) self.pipeline = Pipeline(cfg) @classmethod def list_all_supported_tasks(self, ): logger.info( f"Tasks and recommanded configs that paddlecv supports are : ") buffer = yaml.dump(TASK_DICT) print(buffer) return @classmethod def list_all_supported_models(self, filters=[]): list_model(filters) return def __call__(self, input): res = self.pipeline.run(input) return res