# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np from six.moves import reduce from copy import deepcopy import paddle from paddle import fluid import paddle.fluid.dygraph as dg from paddle.fluid import core from paddle.fluid.layers import utils from paddle.fluid.framework import Variable from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer def _norm(p, dim): """Computes the norm over all dimensions except dim. It differs from pytorch implementation that it does not keep dim. This difference is related with the broadcast mechanism in paddle. Read elementeise_mul for more. """ if dim is None: return np.linalg.norm(p, ord=2, axis=None) elif dim == 0: p = np.reshape(p, newshape=(p.shape[0], -1)) return np.linalg.norm(p, ord=2, axis=1) elif dim == p.ndim - 1: p = np.reshape(p, newshape=(-1, p.shape[-1])) return np.linalg.norm(p, ord=2, axis=0) else: perm = list(range(p.ndim)) perm[0] = dim perm[dim] = 0 return _norm(np.transpose(p, axes=perm)) class FC(dg.Layer): """ **Fully Connected Layer** This function creates a fully connected layer in the network. It can take one or multiple tensors as its inputs(input can be a list of Variable, see Args in detail). It creates a pair of variables called (magnitude(g), direction(V)) for each input tensor. Elementwise_mul(V, g) represents a fully connected weight matrix from each input unit to each output unit. The fully connected layer multiplies each input tensor with its corresponding weight to produce an output Tensor with shape [M, `size`], where M is batch size. If multiple input tensors are given, the results of multiple output tensors with shape [M, `size`] will be summed up. If bias_attr is not None, a bias variable will be created and added to the output. Finally, if activation is not None, it will be applied to the output as well. When the input is single tensor: .. math:: Out = Act({X(normalize(V)g) + b}) When the input are multiple tensors: .. math:: Out = Act({\sum_{i=0}^{N-1}X_i(V_ig_i) + b}) In the above equation: * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable. * :math:`X_i`: The i-th input tensor. * :math:`V_i`: The i-th direction matrix corresponding i-th input tensor. * :math:`g_i`: The i-th magnitude vector corresponding i-th input tensor. * :math:`b`: The bias parameter created by this layer (if needed). * :math:`Act`: The activation function. * :math:`Out`: The output tensor. See below for an example. .. code-block:: text Given: data_1.data = [[[0.1, 0.2], [0.3, 0.4]]] data_1.shape = (1, 2, 2) # 1 is batch_size data_2 = [[[0.1, 0.2, 0.3]]] data_2.shape = (1, 1, 3) out = fluid.layers.fc(input=[data_1, data_2], size=2) Then: out.data = [[0.18669507, 0.1893476]] out.shape = (1, 2) Args: name_scope(str): The name of this class. size(int): The number of output units in this layer. num_flatten_dims (int): The fc layer can accept an input tensor with more than two dimensions. If this happens, the multidimensional tensor will first be flattened into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1) dimensions will be flatten to form the first dimension of the final matrix (height of the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to form the second dimension of the final matrix (width of the matrix). For example, suppose `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3. Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1 param_attr (ParamAttr|list of ParamAttr|None): The parameter attribute for learnable parameters/weights of this layer. bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias of this layer. If it is set to False, no bias will be added to the output units. If it is set to None, the bias is initialized zero. Default: None. act (str|None): Activation to be applied to the output of this layer. is_test(bool): A flag indicating whether execution is in test phase. Default: False dtype(str): Dtype used for weight Raises: ValueError: If rank of the input tensor is less than 2. Examples: .. code-block:: python from paddle.fluid.dygraph.base import to_variable import paddle.fluid as fluid from paddle.fluid.dygraph import FC import numpy as np data = np.random.uniform( -1, 1, [30, 10, 32] ).astype('float32') with fluid.dygraph.guard(): fc = FC( "fc", 64, num_flatten_dims=2) data = to_variable( data ) conv = fc( data ) """ def __init__(self, name_scope, size, num_flatten_dims=1, epsilon=1e-30, param_attr=None, bias_attr=None, act=None, is_test=False, dtype="float32"): super(FC, self).__init__(name_scope, dtype) self._size = size self._num_flatten_dims = num_flatten_dims self._epsilon = epsilon self._dtype = dtype self._param_attr = param_attr self._bias_attr = bias_attr self._act = act self.__g = list() self.__v = list() @property def _v(self, i=0): return self.__v[i] @property def _g(self, i=0): return self.__g[i] @_v.setter def _v(self, value, i=0): assert isinstance(value, Parameter) self.__v[i] = value @_g.setter def _g(self, value, i=0): assert isinstance(value, Parameter) self.__g[i] = value def _build_once(self, input): i = 0 for inp, param in self._helper.iter_inputs_and_params(input, self._param_attr): input_shape = inp.shape param_shape = [ reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1) ] + [self._size] self.__v.append( self.add_parameter( "_v%d" % i, self.create_parameter( attr=param, shape=param_shape, dtype=self._dtype, is_bias=False))) magnitude_shape = param_shape[1:] magnitude_value = np.linalg.norm(self.__v[i].numpy(), ord=2, axis=0) self.__g.append( self.add_parameter( "_g%d" % i, self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( magnitude_value)), shape=magnitude_shape, dtype=self._dtype, is_bias=False))) i += 1 size = list([self._size]) self._b = self.create_parameter( attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True) def forward(self, input): mul_results = list() i = 0 for inp, param in self._helper.iter_inputs_and_params(input, self._param_attr): v_norm = self._helper.create_variable_for_type_inference( self._dtype) v_normalized = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="norm", inputs={"X": self.__v[i]}, outputs={"Out": v_normalized, "Norm": v_norm}, attrs={"axis": 0, "epsilon": self._epsilon}) weight = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="elementwise_mul", inputs={"X": [v_normalized], "Y": [self.__g[i]]}, outputs={"Out": [weight]}, attrs={"axis": 1}) tmp = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="mul", inputs={"X": inp, "Y": weight}, outputs={"Out": tmp}, attrs={ "x_num_col_dims": self._num_flatten_dims, "y_num_col_dims": 1 }) i += 1 mul_results.append(tmp) if len(mul_results) == 1: pre_bias = mul_results[0] else: pre_bias = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}, attrs={"use_mkldnn": False}) if self._b: pre_activation = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type="elementwise_add", inputs={"X": [pre_bias], "Y": [self._b]}, outputs={"Out": [pre_activation]}, attrs={"axis": self._num_flatten_dims}) else: pre_activation = pre_bias # Currently, we don't support inplace in dygraph mode return self._helper.append_activation(pre_activation, act=self._act) class Conv2D(dg.Layer): """ The convolution2D layer calculates the output based on the input, filter and strides, paddings, dilations, groups parameters. Input and Output are in NCHW format, where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Filter is in MCHW format, where M is the number of output image channels, C is the number of input image channels, H is the height of the filter, and W is the width of the filter. If the groups is greater than 1, C will equal the number of input image channels divided by the groups. Please refer to UFLDL's `convolution ` for more detials. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma ((Vg) \\ast X + b) Where: * :math:`X`: Input value, a tensor with NCHW format. * :math:`V`: Filter direction value, a tensor with MCHW format. * :math:`g`: Filter magnitude value, a tensor with M format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\ W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1 Args: name_scope(str) : The name for this class. num_filters(int): The number of filter. It is as same as the output image channel. filter_size (int|tuple|None): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. stride (int|tuple): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: stride = 1. padding (int|tuple): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: padding = 0. dilation (int|tuple): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: dilation = 1. groups (int): The groups number of the Conv2d Layer. According to grouped convolution in Alex Krizhevsky's Deep CNN paper: when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups=1. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of conv2d. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True act (str): Activation type, if it is set to None, activation is not appended. Default: None Raises: ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. Examples: .. code-block:: python from paddle.fluid.dygraph.base import to_variable import paddle.fluid as fluid from paddle.fluid.dygraph import Conv2D import numpy as np data = np.random.uniform( -1, 1, [10, 3, 32, 32] ).astype('float32') with fluid.dygraph.guard(): conv2d = Conv2D( "conv2d", 2, 3) data = to_variable( data ) conv = conv2d( data ) """ def __init__(self, name_scope, num_filters, filter_size, stride=1, padding=0, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, act=None, epsilon=1e-30, dtype="float32"): assert param_attr is not False, "param_attr should not be False here." super(Conv2D, self).__init__(name_scope, dtype) self._groups = groups self._stride = utils.convert_to_list(stride, 2, "stride") self._padding = utils.convert_to_list(padding, 2, "padding") self._dilation = utils.convert_to_list(dilation, 2, "dilation") self._act = act if not isinstance(use_cudnn, bool): raise ValueError("use_cudnn should be True or False") self._use_cudnn = use_cudnn self._filter_size = filter_size self._num_filters = num_filters self._param_attr = param_attr self._bias_attr = bias_attr self._epsilon = epsilon self._dtype = dtype # if (self._num_channels == self._groups and # num_filters % self._num_channels == 0 and not self._use_cudnn): # self._l_type = 'depthwise_conv2d' # else: # TODO(jiabin): recover the usage of depthwise_conv2d when it's # kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17275 self._l_type = "conv2d" def _build_once(self, input): self._num_channels = input.shape[1] if self._groups is None: num_filter_channels = self._num_channels else: if self._num_channels % self._groups != 0: raise ValueError("num_channels must be divisible by groups.") num_filter_channels = self._num_channels // self._groups filter_size = utils.convert_to_list(self._filter_size, 2, "filter_size") filter_shape = [self._num_filters, int(num_filter_channels) ] + filter_size def _get_default_param_initializer(): filter_elem_num = filter_size[0] * filter_size[ 1] * self._num_channels std = (2.0 / filter_elem_num)**0.5 return Normal(0.0, std, 0) # weight_v self._filter_param_v = self.create_parameter( attr=self._param_attr, shape=filter_shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) # weight_g norm_value = _norm( self._filter_param_v.numpy(), dim=0) # CAUTION: hard-code self._filter_param_g = self.create_parameter( attr=fluid.ParamAttr( initializer=fluid.initializer.NumpyArrayInitializer( norm_value)), shape=norm_value.shape, dtype=self._dtype, default_initializer=_get_default_param_initializer()) if self._use_cudnn: self.create_variable( name="kCUDNNFwdAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self.create_variable( name="kCUDNNBwdDataAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self.create_variable( name="kCUDNNBwdFilterAlgoCache", persistable=True, type=core.VarDesc.VarType.RAW) self._bias_param = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): matrix = self._helper.create_variable_for_type_inference(self._dtype) tmp = self._helper.create_variable_for_type_inference(self._dtype) new_shape = [ self._filter_param_v.shape[0], reduce(lambda x, y: x * y, self._filter_param_v.shape[1:], 1), ] self._helper.append_op( type="reshape2", inputs={"X": self._filter_param_v}, attrs={"shape": new_shape}, outputs={"Out": matrix, "XShape": tmp}) m_norm = self._helper.create_variable_for_type_inference(self._dtype) m_normalized = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="norm", inputs={"X": matrix}, outputs={"Out": m_normalized, "Norm": m_norm}, attrs={"axis": 1, "epsilon": self._epsilon}) v_normalized = self._helper.create_variable_for_type_inference( self._dtype) tmp2 = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="reshape2", inputs={"X": m_normalized}, attrs={"shape": self._filter_param_v.shape}, outputs={"Out": v_normalized, "XShape": tmp2}) filter_param = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="elementwise_mul", inputs={"X": [v_normalized], "Y": [self._filter_param_g]}, outputs={"Out": [filter_param]}, attrs={"axis": 0}, # CAUTION: hard-code ) pre_bias = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type=self._l_type, inputs={"Input": input, "Filter": filter_param}, outputs={"Output": pre_bias}, attrs={ "strides": self._stride, "paddings": self._padding, "dilations": self._dilation, "groups": self._groups if self._groups else 1, "use_cudnn": self._use_cudnn, "use_mkldnn": False, }) if self._bias_param is not None: pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type="elementwise_add", inputs={"X": [pre_bias], "Y": [self._bias_param]}, outputs={"Out": [pre_act]}, attrs={"axis": 1}) else: pre_act = pre_bias # Currently, we don't support inplace in dygraph mode return self._helper.append_activation(pre_act, act=self._act) class Conv2DTranspose(dg.Layer): """ **Convlution2D transpose layer** The convolution2D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) are in NCHW format. Where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. Parameters(dilations, strides, paddings) are two elements. These two elements represent height and width, respectively. The details of convolution transpose layer, please refer to the following explanation and references `therein `_. If bias attribution and activation type are provided, bias is added to the output of the convolution, and the corresponding activation function is applied to the final result. For each input :math:`X`, the equation is: .. math:: Out = \sigma ((Vg) \\ast X + b) Where: * :math:`X`: Input value, a tensor with NCHW format. * :math:`V`: Filter value, a tensor with MCHW format. * :math:`g`: Filter value, a tensor with M format. * :math:`\\ast`: Convolution operation. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`\\sigma`: Activation function. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. Example: - Input: Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - Output: Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where .. math:: H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\ W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ) Args: name_scope(str): The name of this class. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple|None): The output image size. If output size is a tuple, it must contain two integers, (image_H, image_W). None if use filter_size, padding, and stride to calculate output_size. if output_size and filter_size are specified at the same time, They should follow the formula above. Default: None. filter_size(int|tuple|None): The filter size. If filter_size is a tuple, it must contain two integers, (filter_size_H, filter_size_W). Otherwise, the filter will be a square. None if use output size to calculate filter_size. Default: None. padding(int|tuple): The padding size. If padding is a tuple, it must contain two integers, (padding_H, padding_W). Otherwise, the padding_H = padding_W = padding. Default: padding = 0. stride(int|tuple): The stride size. If stride is a tuple, it must contain two integers, (stride_H, stride_W). Otherwise, the stride_H = stride_W = stride. Default: stride = 1. dilation(int|tuple): The dilation size. If dilation is a tuple, it must contain two integers, (dilation_H, dilation_W). Otherwise, the dilation_H = dilation_W = dilation. Default: dilation = 1. groups(int): The groups number of the Conv2d transpose layer. Inspired by grouped convolution in Alex Krizhevsky's Deep CNN paper, in which when group=2, the first half of the filters is only connected to the first half of the input channels, while the second half of the filters is only connected to the second half of the input channels. Default: groups = 1. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is initialized with Xavier. Default: None. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose. If it is set to False, no bias will be added to the output units. If it is set to None or one attribute of ParamAttr, conv2d_transpose will create ParamAttr as bias_attr. If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None. use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn library is installed. Default: True. act (str): Activation type, if it is set to None, activation is not appended. Default: None. Returns: Variable: The tensor variable storing the convolution transpose result. Raises: ValueError: If the shapes of input, filter_size, stride, padding and groups mismatch. Examples: .. code-block:: python import paddle.fluid as fluid import numpy with fluid.dygraph.guard(): data = numpy.random.random((3, 32, 32)).astype('float32') conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose( 'Conv2DTranspose', num_filters=2, filter_size=3) ret = conv2DTranspose(fluid.dygraph.base.to_variable(data)) """ def __init__(self, name_scope, num_filters, output_size=None, filter_size=None, padding=0, stride=1, dilation=1, groups=None, param_attr=None, bias_attr=None, use_cudnn=True, epsilon=1e-30, act=None, dtype="float32"): super(Conv2DTranspose, self).__init__(name_scope, dtype) assert (param_attr is not False ), "param_attr should not be False in conv2d_transpose." self._param_attr = param_attr self._bias_attr = bias_attr self._groups = groups self._num_filters = num_filters self._use_cudnn = use_cudnn self._padding = padding self._stride = stride self._dilation = dilation self._filter_size = filter_size self._output_size = output_size self._op_type = "conv2d_transpose" self._epsilon = epsilon def _build_once(self, input): input_channel = input.shape[1] if (input_channel == self._groups and self._num_filters == input_channel and not self._use_cudnn): self._op_type = "depthwise_conv2d_transpose" if not isinstance(input, Variable): raise TypeError("Input of conv2d_transpose must be Variable") self._padding = utils.convert_to_list(self._padding, 2, "padding") self._stride = utils.convert_to_list(self._stride, 2, "stride") self._dilation = utils.convert_to_list(self._dilation, 2, "dilation") if not isinstance(self._use_cudnn, bool): raise ValueError("use_cudnn should be True or False") if self._filter_size is None: if self._output_size is None: raise ValueError( "output_size must be set when filter_size is None") if isinstance(self._output_size, int): self._output_size = [self._output_size, self._output_size] h_in = input.shape[2] w_in = input.shape[3] filter_size_h = (self._output_size[0] - (h_in - 1) * self._stride[0] + 2 * self._padding[0] - 1) // self._dilation[0] + 1 filter_size_w = (self._output_size[1] - (w_in - 1) * self._stride[1] + 2 * self._padding[1] - 1) // self._dilation[1] + 1 self._filter_size = [filter_size_h, filter_size_w] else: self._filter_size = utils.convert_to_list( self._filter_size, 2, "conv2d_transpose.filter_size") if self._output_size is None: self._output_size = [] elif isinstance(self._output_size, list) or isinstance( self._output_size, int): self._output_size = utils.convert_to_list(self._output_size, 2, "output_size") else: raise ValueError("output_size should be list or int") self._padding = utils.convert_to_list(self._padding, 2, "padding") self._groups = 1 if self._groups is None else self._groups filter_shape = [ input_channel, self._num_filters // self._groups, ] + self._filter_size # img filter v (direction) self._img_filter_v = self.create_parameter( dtype=input.dtype, shape=filter_shape, attr=self._param_attr) # img filter g (magnitude) img_filter_magnitude = _norm( self._img_filter_v.numpy(), dim=0) # CAUTION: hard-code self._img_filter_g = self.create_parameter( dtype=input.dtype, shape=img_filter_magnitude.shape, attr=fluid.ParamAttr( initializer=NumpyArrayInitializer(img_filter_magnitude))) self._img_bias = self.create_parameter( attr=self._bias_attr, shape=[self._num_filters], dtype=self._dtype, is_bias=True) def forward(self, input): matrix = self._helper.create_variable_for_type_inference(self._dtype) tmp = self._helper.create_variable_for_type_inference(self._dtype) new_shape = [ self._img_filter_v.shape[0], reduce(lambda x, y: x * y, self._img_filter_v.shape[1:], 1), ] self._helper.append_op( type="reshape2", inputs={"X": self._img_filter_v}, attrs={"shape": new_shape}, outputs={"Out": matrix, "XShape": tmp}) m_norm = self._helper.create_variable_for_type_inference(self._dtype) m_normalized = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="norm", inputs={"X": matrix}, outputs={"Out": m_normalized, "Norm": m_norm}, attrs={"axis": 1, "epsilon": self._epsilon}) v_normalized = self._helper.create_variable_for_type_inference( self._dtype) tmp2 = self._helper.create_variable_for_type_inference(self._dtype) self._helper.append_op( type="reshape2", inputs={"X": m_normalized}, attrs={"shape": self._img_filter_v.shape}, outputs={"Out": v_normalized, "XShape": tmp2}) img_filter = self._helper.create_variable_for_type_inference( self._dtype) self._helper.append_op( type="elementwise_mul", inputs={"X": [v_normalized], "Y": [self._img_filter_g]}, outputs={"Out": [img_filter]}, attrs={"axis": 0}, # CAUTION: hard-code ) pre_bias = self._helper.create_variable_for_type_inference( dtype=input.dtype) self._helper.append_op( type=self._op_type, inputs={"Input": [input], "Filter": [img_filter]}, outputs={"Output": pre_bias}, attrs={ "output_size": self._output_size, "strides": self._stride, "paddings": self._padding, "dilations": self._dilation, "groups": self._groups, "use_cudnn": self._use_cudnn, }) if self._img_bias is not None: pre_act = self._helper.create_variable_for_type_inference( dtype=self._dtype) self._helper.append_op( type="elementwise_add", inputs={"X": [pre_bias], "Y": [self._img_bias]}, outputs={"Out": [pre_act]}, attrs={"axis": 1}) else: pre_act = pre_bias out = self._helper.append_activation(pre_act) return out