import argparse import functools import os from PIL import Image from paddle.fluid import core import paddle.fluid as fluid import paddle import numpy as np from scipy.misc import imsave from model import * import glob from utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) # yapf: disable add_arg('input', str, None, "The images to be infered.") add_arg('output', str, "./infer_result", "The directory the infer result to be saved to.") add_arg('init_model', str, None, "The init model file of directory.") add_arg('input_style', str, "A", "The style of the input, A or B") add_arg('use_gpu', bool, True, "Whether to use GPU to train.") # yapf: enable def infer(args): data_shape = [-1, 3, 256, 256] input = fluid.layers.data(name='input', shape=data_shape, dtype='float32') if args.input_style == "A": fake = build_generator_resnet_9blocks(input, name="g_A") elif args.input_style == "B": fake = build_generator_resnet_9blocks(input, name="g_B") else: raise "Input with style [%s] is not supported." % args.input_style # prepare environment place = fluid.CPUPlace() if args.use_gpu: place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) fluid.io.load_persistables(exe, args.init_model) if not os.path.exists(args.output): os.makedirs(args.output) for file in glob.glob(args.input): print "read %s" % file image_name = os.path.basename(file) image = Image.open(file) image = image.resize((256, 256)) image = np.array(image) / 127.5 - 1 if len(image.shape) != 3: continue data = image.transpose([2, 0, 1])[np.newaxis, :].astype("float32") tensor = core.LoDTensor() tensor.set(data, place) fake_temp = exe.run(fetch_list=[fake.name], feed={"input": tensor}) fake_temp = np.squeeze(fake_temp[0]).transpose([1, 2, 0]) input_temp = np.squeeze(data).transpose([1, 2, 0]) imsave(args.output + "/fake_" + image_name, ( (fake_temp + 1) * 127.5).astype(np.uint8)) if __name__ == "__main__": args = parser.parse_args() print_arguments(args) infer(args)