"""Contains the audio segment class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import io import soundfile import scikits.samplerate from scipy import signal class AudioSegment(object): """Monaural audio segment abstraction. :param samples: Audio samples [num_samples x num_channels]. :type samples: ndarray.float32 :param sample_rate: Audio sample rate. :type sample_rate: int :raises TypeError: If the sample data type is not float or int. """ def __init__(self, samples, sample_rate): """Create audio segment from samples. Samples are convert float32 internally, with int scaled to [-1, 1]. """ self._samples = self._convert_samples_to_float32(samples) self._sample_rate = sample_rate if self._samples.ndim >= 2: self._samples = np.mean(self._samples, 1) def __eq__(self, other): """Return whether two objects are equal.""" if type(other) is not type(self): return False if self._sample_rate != other._sample_rate: return False if self._samples.shape != other._samples.shape: return False if np.any(self.samples != other._samples): return False return True def __ne__(self, other): """Return whether two objects are unequal.""" return not self.__eq__(other) def __str__(self): """Return human-readable representation of segment.""" return ("%s: num_samples=%d, sample_rate=%d, duration=%.2fsec, " "rms=%.2fdB" % (type(self), self.num_samples, self.sample_rate, self.duration, self.rms_db)) @classmethod def from_file(cls, file): """Create audio segment from audio file. :param filepath: Filepath or file object to audio file. :type filepath: basestring|file :return: Audio segment instance. :rtype: AudioSegment """ samples, sample_rate = soundfile.read(file, dtype='float32') return cls(samples, sample_rate) @classmethod def slice_from_file(cls, fname, start=None, end=None): """ Loads a small section of an audio without having to load the entire file into the memory which can be incredibly wasteful. :param fname: input audio file name :type fname: bsaestring :param start: start time in seconds (supported granularity is ms) If start is negative, it wraps around from the end. If not provided, this function reads from the very beginning. :type start: float :param end: start time in seconds (supported granularity is ms) If end is negative, it wraps around from the end. If not provided, the default behvaior is to read to the end of the file. :type end: float :return:the specified slice of input audio in the audio.AudioSegment format. """ sndfile = soundfile.SoundFile(fname) sample_rate = sndfile.samplerate if sndfile.channels != 1: raise TypeError("{} has more than 1 channel.".format(fname)) duration = float(len(sndfile)) / sample_rate if start is None: start = 0.0 if end is None: end = duration if start < 0.0: start += duration if end < 0.0: end += duration if start < 0.0: raise IndexError("The slice start position ({} s) is out of " "bounds. Filename: {}".format(start, fname)) if end < 0.0: raise IndexError("The slice end position ({} s) is out of bounds " "Filename: {}".format(end, fname)) if start > end: raise IndexError("The slice start position ({} s) is later than " "the slice end position ({} s)." .format(start, end)) if end > duration: raise ValueError("The slice end time ({} s) is out of " "bounds (> {} s) Filename: {}" .format(end, duration, fname)) start_frame = int(start * sample_rate) end_frame = int(end * sample_rate) sndfile.seek(start_frame) data = sndfile.read(frames=end_frame - start_frame, dtype='float32') return cls(data, sample_rate) @classmethod def from_bytes(cls, bytes): """Create audio segment from a byte string containing audio samples. :param bytes: Byte string containing audio samples. :type bytes: str :return: Audio segment instance. :rtype: AudioSegment """ samples, sample_rate = soundfile.read( io.BytesIO(bytes), dtype='float32') return cls(samples, sample_rate) @classmethod def make_silence(cls, duration, sample_rate): """Creates a silent audio segment of the given duration and sample rate. :param duration: length of silence in seconds :type duration: scalar :param sample_rate: sample rate :type sample_rate: scalar :returns: silence of the given duration :rtype: AudioSegment """ samples = np.zeros(int(float(duration) * sample_rate)) return cls(samples, sample_rate) @classmethod def concatenate(cls, *segments): """Concatenate an arbitrary number of audio segments together. :param *segments: input audio segments :type *segments: [AudioSegment] """ # Perform basic sanity-checks. N = len(segments) if N == 0: raise ValueError("No audio segments are given to concatenate.") sample_rate = segments[0]._sample_rate for segment in segments: if sample_rate != segment._sample_rate: raise ValueError("Can't concatenate segments with " "different sample rates") if type(segment) is not cls: raise TypeError("Only audio segments of the same type " "instance can be concatenated.") samples = np.concatenate([seg.samples for seg in segments]) return cls(samples, sample_rate) def to_wav_file(self, filepath, dtype='float32'): """Save audio segment to disk as wav file. :param filepath: WAV filepath or file object to save the audio segment. :type filepath: basestring|file :param dtype: Subtype for audio file. Options: 'int16', 'int32', 'float32', 'float64'. Default is 'float32'. :type dtype: str :raises TypeError: If dtype is not supported. """ samples = self._convert_samples_from_float32(self._samples, dtype) subtype_map = { 'int16': 'PCM_16', 'int32': 'PCM_32', 'float32': 'FLOAT', 'float64': 'DOUBLE' } soundfile.write( filepath, samples, self._sample_rate, format='WAV', subtype=subtype_map[dtype]) def to_bytes(self, dtype='float32'): """Create a byte string containing the audio content. :param dtype: Data type for export samples. Options: 'int16', 'int32', 'float32', 'float64'. Default is 'float32'. :type dtype: str :return: Byte string containing audio content. :rtype: str """ samples = self._convert_samples_from_float32(self._samples, dtype) return samples.tostring() def apply_gain(self, gain): """Apply gain in decibels to samples. Note that this is an in-place transformation. :param gain: Gain in decibels to apply to samples. :type gain: float """ self._samples *= 10.**(gain / 20.) def change_speed(self, speed_rate): """Change the audio speed by linear interpolation. Note that this is an in-place transformation. :param speed_rate: Rate of speed change: speed_rate > 1.0, speed up the audio; speed_rate = 1.0, unchanged; speed_rate < 1.0, slow down the audio; speed_rate <= 0.0, not allowed, raise ValueError. :type speed_rate: float :raises ValueError: If speed_rate <= 0.0. """ if speed_rate <= 0: raise ValueError("speed_rate should be greater than zero.") old_length = self._samples.shape[0] new_length = int(old_length / speed_rate) old_indices = np.arange(old_length) new_indices = np.linspace(start=0, stop=old_length, num=new_length) self._samples = np.interp(new_indices, old_indices, self._samples) def normalize(self, target_db=-20, max_gain_db=300.0): """Normalize audio to desired RMS value in decibels. Note that this is an in-place transformation. :param target_db: Target RMS value in decibels.This value should be less than 0.0 as 0.0 is full-scale audio. :type target_db: float, optional :param max_gain_db: Max amount of gain in dB that can be applied for normalization. This is to prevent nans when attempting to normalize a signal consisting of all zeros. :type max_gain_db: float, optional :raises NormalizationWarning: if the required gain to normalize the segment to the target_db value exceeds max_gain_db. """ gain = target_db - self.rms_db if gain > max_gain_db: raise ValueError( "Unable to normalize segment to {} dB because it has an RMS " "value of {} dB and the difference exceeds max_gain_db ({} dB)" .format(target_db, self.rms_db, max_gain_db)) gain = min(max_gain_db, target_db - self.rms_db) self.apply_gain(gain) def normalize_online_bayesian(self, target_db, prior_db, prior_samples, startup_delay=0.0): """ Normalize audio using a production-compatible online/causal algorithm. This uses an exponential likelihood and gamma prior to make online estimates of the RMS even when there are very few samples. Note that this is an in-place transformation. :param target_db: Target RMS value in decibels :type target_bd: scalar :param prior_db: Prior RMS estimate in decibels :type prior_db: scalar :param prior_samples: Prior strength in number of samples :type prior_samples: scalar :param startup_delay: Default: 0.0 s. If provided, this function will accrue statistics for the first startup_delay seconds before applying online normalization. :type startup_delay: scalar """ # Estimate total RMS online startup_sample_idx = min(self.num_samples - 1, int(self.sample_rate * startup_delay)) prior_mean_squared = 10.**(prior_db / 10.) prior_sum_of_squares = prior_mean_squared * prior_samples cumsum_of_squares = np.cumsum(self.samples**2) sample_count = np.arange(len(self)) + 1 if startup_sample_idx > 0: cumsum_of_squares[:startup_sample_idx] = \ cumsum_of_squares[startup_sample_idx] sample_count[:startup_sample_idx] = \ sample_count[startup_sample_idx] mean_squared_estimate = ((cumsum_of_squares + prior_sum_of_squares) / (sample_count + prior_samples)) rms_estimate_db = 10 * np.log10(mean_squared_estimate) # Compute required time-varying gain gain_db = target_db - rms_estimate_db # Apply gain to new segment self.apply_gain(gain_db) def normalize_ewma(self, target_db, decay_rate, startup_delay, rms_eps=1e-6, max_gain_db=300.0): startup_sample_idx = min(self.num_samples - 1, int(self.sample_rate * startup_delay)) mean_sq = self.samples**2 if startup_sample_idx > 0: mean_sq[:startup_sample_idx] = \ np.sum(mean_sq[:startup_sample_idx]) / startup_sample_idx idx_start = max(0, startup_sample_idx - 1) initial_condition = mean_sq[idx_start] * decay_rate mean_sq[idx_start:] = lfilter( [1.0 - decay_rate], [1.0, -decay_rate], mean_sq[idx_start:], axis=0, zi=[initial_condition])[0] rms_estimate_db = 10.0 * np.log10(mean_sq + rms_eps) gain_db = target_db - rms_estimate_db if np.any(gain_db > max_gain_db): warnings.warn( "Unable to normalize segment to {} dB because it has an RMS " "value of {} dB and the difference exceeds max_gain_db ({} dB)" .format(target_db, self.rms_db, max_gain_db), NormalizationWarning) gain_db = np.minimum(gain_db, max_gain_db) self.apply_gain(gain_db) def resample(self, target_sample_rate, quality='sinc_medium'): """Resample audio and return new AudioSegment. This resamples the audio to a new sample rate and returns a brand new AudioSegment. The existing AudioSegment is unchanged. Note that this is an in-place transformation. :param new_sample_rate: target sample rate :type new_sample_rate: scalar :param quality: One of {'sinc_fastest', 'sinc_medium', 'sinc_best'}. Sets resampling speed/quality tradeoff. See http://www.mega-nerd.com/SRC/api_misc.html#Converters :type quality: basestring """ resample_ratio = target_sample_rate / self._sample_rate new_samples = scikits.samplerate.resample( self._samples, r=resample_ratio, type=quality) self._samples = new_samples self._sample_rate = new_sample_rate def pad_silence(self, duration, sides='both'): """Pads this audio sample with a period of silence. Note that this is an in-place transformation. :param duration: length of silence in seconds to pad :type duration: float :param sides: 'beginning' - adds silence in the beginning 'end' - adds silence in the end 'both' - adds silence in both the beginning and the end. :type sides: basestring """ if duration == 0.0: return self cls = type(self) silence = cls.make_silence(duration, self._sample_rate) if sides == "beginning": padded = cls.concatenate(silence, self) elif sides == "end": padded = cls.concatenate(self, silence) elif sides == "both": padded = cls.concatenate(silence, self, silence) else: raise ValueError("Unknown value for the kwarg 'sides'") self._samples = padded._samples self._sample_rate = padded._sample_rate def subsegment(self, start_sec=None, end_sec=None): """Return new AudioSegment containing audio between given boundaries. :param start_sec: Beginning of subsegment in seconds, (beginning of segment if None). :type start_sec: scalar :param end_sec: End of subsegment in seconds, (end of segment if None). :type end_sec: scalar :return: New AudioSegment containing specified subsegment. :trype: AudioSegment """ # Default boundaries if start_sec is None: start_sec = 0.0 if end_sec is None: end_sec = self.duration # negative boundaries are relative to end of segment if start_sec < 0.0: start_sec = self.duration + start_sec if end_sec < 0.0: end_sec = self.duration + end_sec start_sample = int(round(start_sec * self._sample_rate)) end_sample = int(round(end_sec * self._sample_rate)) samples = self._samples[start_sample:end_sample] return type(self)(samples, sample_rate=self._sample_rate) def random_subsegment(self, subsegment_length, rng=None): """ Return a random subsegment of a specified length in seconds. :param subsegment_length: Subsegment length in seconds. :type subsegment_length: scalar :param rng: Random number generator state :type rng: random.Random [optional] :return:clip (SpeechDLSegment): New SpeechDLSegmen containing random subsegment of original segment. """ if rng is None: rng = random.Random() if subsegment_length > self.duration: raise ValueError("Length of subsegment must not be greater " "than original segment.") start_time = rng.uniform(0.0, self.duration - subsegment_length) return self.subsegment(start_time, start_time + subsegment_length) def convolve(self, ir, allow_resampling=False): """Convolve this audio segment with the given filter. :param ir: impulse response :type ir: AudioSegment :param allow_resampling: indicates whether resampling is allowed when the ir has a different sample rate from this signal. :type allow_resampling: boolean """ if allow_resampling and self.sample_rate != ir.sample_rate: ir = ir.resample(self.sample_rate) if self.sample_rate != ir.sample_rate: raise ValueError("Impulse response sample rate ({}Hz) is " "equal to base signal sample rate ({}Hz)." .format(ir.sample_rate, self.sample_rate)) samples = signal.fftconvolve(self.samples, ir.samples, "full") self._samples = samples def convolve_and_normalize(self, ir, allow_resample=False): """Convolve and normalize the resulting audio segment so that it has the same average power as the input signal. :param ir: impulse response :type ir: AudioSegment :param allow_resampling: indicates whether resampling is allowed when the ir has a different sample rate from this signal. :type allow_resampling: boolean """ self.convolve(ir, allow_resampling=allow_resampling) self.normalize(target_db=self.rms_db) def add_noise(self, noise, snr_dB, allow_downsampling=False, max_gain_db=300.0, rng=None): """Adds the given noise segment at a specific signal-to-noise ratio. If the noise segment is longer than this segment, a random subsegment of matching length is sampled from it and used instead. :param noise: Noise signal to add. :type noise: SpeechDLSegment :param snr_dB: Signal-to-Noise Ratio, in decibels. :type snr_dB: scalar :param allow_downsampling: whether to allow the noise signal to be downsampled to match the base signal sample rate. :type allow_downsampling: boolean :param max_gain_db: Maximum amount of gain to apply to noise signal before adding it in. This is to prevent attempting to apply infinite gain to a zero signal. :type max_gain_db: scalar :param rng: Random number generator state. :type rng: random.Random Returns: SpeechDLSegment: signal with noise added. """ if rng is None: rng = random.Random() if allow_downsampling and noise.sample_rate > self.sample_rate: noise = noise.resample(self.sample_rate) if noise.sample_rate != self.sample_rate: raise ValueError("Noise sample rate ({}Hz) is not equal to " "base signal sample rate ({}Hz)." .format(noise.sample_rate, self.sample_rate)) if noise.duration < self.duration: raise ValueError("Noise signal ({} sec) must be at " "least as long as base signal ({} sec)." .format(noise.duration, self.duration)) noise_gain_db = self.rms_db - noise.rms_db - snr_dB noise_gain_db = min(max_gain_db, noise_gain_db) noise_subsegment = noise.random_subsegment(self.duration, rng=rng) output = self + self.tranform_noise(noise_subsegment, noise_gain_db) self._samples = output._samples self._sample_rate = output._sample_rate @property def samples(self): """Return audio samples. :return: Audio samples. :rtype: ndarray """ return self._samples.copy() @property def sample_rate(self): """Return audio sample rate. :return: Audio sample rate. :rtype: int """ return self._sample_rate @property def num_samples(self): """Return number of samples. :return: Number of samples. :rtype: int """ return self._samples.shape[0] @property def duration(self): """Return audio duration. :return: Audio duration in seconds. :rtype: float """ return self._samples.shape[0] / float(self._sample_rate) @property def rms_db(self): """Return root mean square energy of the audio in decibels. :return: Root mean square energy in decibels. :rtype: float """ # square root => multiply by 10 instead of 20 for dBs mean_square = np.mean(self._samples**2) return 10 * np.log10(mean_square) def _convert_samples_to_float32(self, samples): """Convert sample type to float32. Audio sample type is usually integer or float-point. Integers will be scaled to [-1, 1] in float32. """ float32_samples = samples.astype('float32') if samples.dtype in np.sctypes['int']: bits = np.iinfo(samples.dtype).bits float32_samples *= (1. / 2**(bits - 1)) elif samples.dtype in np.sctypes['float']: pass else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return float32_samples def _convert_samples_from_float32(self, samples, dtype): """Convert sample type from float32 to dtype. Audio sample type is usually integer or float-point. For integer type, float32 will be rescaled from [-1, 1] to the maximum range supported by the integer type. This is for writing a audio file. """ dtype = np.dtype(dtype) output_samples = samples.copy() if dtype in np.sctypes['int']: bits = np.iinfo(dtype).bits output_samples *= (2**(bits - 1) / 1.) min_val = np.iinfo(dtype).min max_val = np.iinfo(dtype).max output_samples[output_samples > max_val] = max_val output_samples[output_samples < min_val] = min_val elif samples.dtype in np.sctypes['float']: min_val = np.finfo(dtype).min max_val = np.finfo(dtype).max output_samples[output_samples > max_val] = max_val output_samples[output_samples < min_val] = min_val else: raise TypeError("Unsupported sample type: %s." % samples.dtype) return output_samples.astype(dtype) def tranform_noise(self, noise_subsegment, noise_gain_db): """ tranform noise file """ return type(self)(noise_subsegment._samples * (10.**( noise_gain_db / 20.)), noise_subsegment._sample_rate)