#Hyperparameters config python train.py \ --model=SE_ResNeXt50_32x4d \ --batch_size=32 \ --total_images=1281167 \ --class_dim=1000 \ --image_shape=3,224,224 \ --model_save_dir=output/ \ --with_mem_opt=True \ --lr_strategy=piecewise_decay \ --lr=0.1 # >log_SE_ResNeXt50_32x4d.txt 2>&1 & #AlexNet: #python train.py \ # --model=AlexNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.01 #VGG11: #python train.py \ # --model=VGG11 \ # --batch_size=512 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 #MobileNet v1: #python train.py \ # --model=MobileNet \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 #python train.py \ # --model=MobileNetV2 \ # --batch_size=500 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=cosine_decay \ # --num_epochs=200 \ # --lr=0.1 #ResNet50: #python train.py \ # --model=ResNet50 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=True \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 #ResNet101: #python train.py \ # --model=ResNet101 \ # --batch_size=256 \ # --total_images=1281167 \ # --class_dim=1000 \ # --image_shape=3,224,224 \ # --model_save_dir=output/ \ # --with_mem_opt=False \ # --lr_strategy=piecewise_decay \ # --num_epochs=120 \ # --lr=0.1 #ResNet152: #python train.py \ # --model=ResNet152 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=piecewise_decay \ # --lr=0.1 \ # --num_epochs=120 \ # --l2_decay=1e-4 \(TODO) #SE_ResNeXt50: #python train.py \ # --model=SE_ResNeXt50 \ # --batch_size=400 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --l2_decay=12e-5 \(TODO) #SE_ResNeXt101: #python train.py \ # --model=SE_ResNeXt101 \ # --batch_size=400 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=200 \ # --l2_decay=15e-5 \(TODO) #VGG11: #python train.py \ # --model=VGG11 \ # --batch_size=512 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.1 \ # --num_epochs=90 \ # --l2_decay=2e-4 \(TODO) #VGG13: #python train.py # --model=VGG13 \ # --batch_size=256 \ # --total_images=1281167 \ # --image_shape=3,224,224 \ # --lr_strategy=cosine_decay \ # --lr=0.01 \ # --num_epochs=90 \ # --l2_decay=3e-4 \(TODO)