# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import multiprocessing import paddle.fluid as fluid import sys sys.path.append('..') from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results import ppdet.utils.checkpoint as checkpoint from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu from ppdet.modeling.model_input import create_feed from ppdet.data.data_feed import create_reader from ppdet.core.workspace import load_config, merge_config, create import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def main(): """ Main evaluate function """ cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int( os.environ.get('CPU_NUM', multiprocessing.cpu_count())) if 'eval_feed' not in cfg: eval_feed = create(main_arch + 'EvalFeed') else: eval_feed = create(cfg.eval_feed) # define executor place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) startup_prog = fluid.Program() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): pyreader, feed_vars = create_feed(eval_feed) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) reader = create_reader(eval_feed) pyreader.decorate_sample_list_generator(reader, place) # compile program for multi-devices if devices_num <= 1: compile_program = fluid.compiler.CompiledProgram(eval_prog) else: build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False compile_program = fluid.compiler.CompiledProgram( eval_prog).with_data_parallel(build_strategy=build_strategy) # load model exe.run(startup_prog) if 'weights' in cfg: checkpoint.load_pretrain(exe, eval_prog, cfg.weights) extra_keys = [] if 'metric' in cfg and cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys) results = eval_run(exe, compile_program, pyreader, keys, values, cls) # evaluation resolution = None if 'mask' in results[0]: resolution = model.mask_head.resolution eval_results(results, eval_feed, cfg.metric, resolution, FLAGS.output_file) if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "-f", "--output_file", default=None, type=str, help="Evaluation file name, default to bbox.json and mask.json.") FLAGS = parser.parse_args() main()