export CUDA_VISIBLE_DEVICES=4 export FLAGS_eager_delete_tensor_gb=0.0 #pretrain python -u main.py \ --do_train True \ --use_cuda \ --save_path model_files_tmp/matching_pretrained \ --train_path data/unlabel_data/train.ids \ --val_path data/unlabel_data/val.ids #finetune based on one task TASK=human python -u main.py \ --do_train True \ --loss_type L2 \ --use_cuda \ --save_path model_files_tmp/${TASK}_finetuned \ --init_model model_files/matching_pretrained \ --train_path data/label_data/$TASK/train.ids \ --val_path data/label_data/$TASK/val.ids \ --print_step 1 \ --save_step 1 \ --num_scan_data 50 #evaluate pretrained model by Recall python -u main.py \ --do_val True \ --use_cuda \ --test_path data/unlabel_data/test.ids \ --init_model model_files/matching_pretrained \ --loss_type CLS #evaluate pretrained model by Cor for task in seq2seq_naive seq2seq_att keywords human do echo $task python -u main.py \ --do_val True \ --use_cuda \ --test_path data/label_data/$task/test.ids \ --init_model model_files/matching_pretrained \ --loss_type L2 done #evaluate finetuned model by Cor for task in seq2seq_naive seq2seq_att keywords human do echo $task python -u main.py \ --do_val True \ --use_cuda \ --test_path data/label_data/$task/test.ids \ --init_model model_files/${task}_finetuned \ --loss_type L2 done #infer TASK=human python -u main.py \ --do_infer True \ --use_cuda \ --test_path data/label_data/$TASK/test.ids \ --init_model model_files/${TASK}_finetuned