# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import io import os import sys sys.path.append("../../") from functools import partial import numpy as np import paddle from paddle import inference from paddlenlp.datasets import IWSLT15 from paddlenlp.metrics import BLEU from args import parse_args from data import create_infer_loader from predict import post_process_seq class Predictor(object): def __init__(self, predictor, input_handles, output_handles): self.predictor = predictor self.input_handles = input_handles self.output_handles = output_handles @classmethod def create_predictor(cls, args): config = paddle.inference.Config(args.export_path + ".pdmodel", args.export_path + ".pdiparams") if args.select_device == "gpu": # set GPU configs accordingly config.enable_use_gpu(100, 0) elif args.select_device == "cpu": # set CPU configs accordingly, # such as enable_mkldnn, set_cpu_math_library_num_threads config.disable_gpu() elif args.select_device == "xpu": # set XPU configs accordingly config.enable_xpu(100) config.switch_use_feed_fetch_ops(False) predictor = paddle.inference.create_predictor(config) input_handles = [ predictor.get_input_handle(name) for name in predictor.get_input_names() ] output_handles = [ predictor.get_input_handle(name) for name in predictor.get_output_names() ] return cls(predictor, input_handles, output_handles) def predict_batch(self, data): for input_field, input_handle in zip(data, self.input_handles): input_handle.copy_from_cpu(input_field.numpy() if isinstance( input_field, paddle.Tensor) else input_field) self.predictor.run() output = [ output_handle.copy_to_cpu() for output_handle in self.output_handles ] return output def predict(self, dataloader, infer_output_file, trg_idx2word, bos_id, eos_id): cand_list = [] with io.open(infer_output_file, 'w', encoding='utf-8') as f: for data in dataloader(): finished_seq = self.predict_batch(data)[0] finished_seq = finished_seq[:, :, np.newaxis] if len( finished_seq.shape) == 2 else finished_seq finished_seq = np.transpose(finished_seq, [0, 2, 1]) for ins in finished_seq: for beam_idx, beam in enumerate(ins): id_list = post_process_seq(beam, bos_id, eos_id) word_list = [trg_idx2word[id] for id in id_list] sequence = " ".join(word_list) + "\n" f.write(sequence) cand_list.append(word_list) break test_ds = IWSLT15.get_datasets(["test"]) bleu = BLEU() for i, data in enumerate(test_ds): ref = data[1].split() bleu.add_inst(cand_list[i], [ref]) print("BLEU score is %s." % bleu.score()) def main(): args = parse_args() predictor = Predictor.create_predictor(args) test_loader, src_vocab_size, tgt_vocab_size, bos_id, eos_id = create_infer_loader( args) _, vocab = IWSLT15.get_vocab() trg_idx2word = vocab.idx_to_token predictor.predict(test_loader, args.infer_output_file, trg_idx2word, bos_id, eos_id) if __name__ == "__main__": main()