[DEFAULT] sample_seed: 1234 # The value in `DEFAULT` section will be referenced by other sections. # For convinence, we will put the variables which changes frequently here and # let other section refer them # Input settings dataset_name: HousePrice max_house_num: 100 max_public_num: 100 batch_shuffle: False CUDA_VISIBLE_DEVICES: 0 FLAGS_fraction_of_gpu_memory_to_use: 0.8 # Input settings #reader: dataset | pyreader | async | datafeed | sync #data_reader: pyreader data_reader: datafeed dataset_mode: Memory #local-cpu | local-gpu platform: local-gpu #platform: local-cpu dis_radius: 1.0 avg_eval: False with_car_dis: False with_house_attr: False bj_batch_size: 5256 #bj_batch_size: 7573 #bj_batch_size: 423 sh_batch_size: 8126 #sh_batch_size: 11604 #sh_batch_size: 822 gz_batch_size: 4560 #gz_batch_size: 6508 #gz_batch_size: 367 sz_batch_size: 2693 #sz_batch_size: 3849 #sz_batch_size: 192 city_name: num_samples_train: ${DEFAULT:_batch_size} train_batch_size: ${DEFAULT:_batch_size} #train_batch_size: 2 num_samples_eval: 10 eval_batch_size: 10 kv_path: None # Model settings model_name: HousePrice preprocessing_name: None file_pattern: part- num_in_dimension: 3 num_out_dimension: 1 # Learning options max_number_of_steps: None init_learning_rate: 0.2 emb_lr: ${DEFAULT:init_learning_rate} fc_lr: ${DEFAULT:init_learning_rate} base_lr: ${DEFAULT:init_learning_rate} [Convert] # The name of the dataset to convert dataset_name: ${DEFAULT:dataset_name} #dataset_dir: ${DEFAULT:dataset_dir} dataset_dir: stream # The output Records file name prefix. dataset_split_name: train # The number of Records per shard num_per_shard: 100000 # The dimensions of net input vectors, it is just used by svm dataset # which of input are sparse tensors now num_in_dimension: ${DEFAULT:num_in_dimension} # The output file name pattern with two placeholders ("%s" and "%d"), # it must correspond to the glob `file_pattern' in Train and Evaluate # config sections [Train] ####################### # Dataset Configure # ####################### # The name of the dataset to load dataset_name: ${DEFAULT:dataset_name} # The directory where the dataset files are stored dataset_dir: ${DEFAULT:dataset_dir} file_list: ../tmp/data/poi/raw//poi_sample.train # dataset_split_name dataset_split_name: train # The glob pattern for data path, `file_pattern' must contain only one "%s" # which is the placeholder for split name (such as 'train', 'validation') file_pattern: ${DEFAULT:file_pattern} # The file type text or record file_type: record # kv path, used in image_sim kv_path: ${DEFAULT:kv_path} # The number of input sample for training num_samples: ${DEFAULT:num_samples_train} # The number of parallel readers that read data from the dataset num_readers: 2 # The number of threads used to create the batches num_preprocessing_threads: 4 # Number of epochs from dataset source num_epochs_input: 200 ########################### # Basic Train Configure # ########################### # Directory where checkpoints and event logs are written to. train_dir: ../tmp/model/house_price/save_model/${DEFAULT:city_name} # The max number of ckpt files to store variables save_max_to_keep: 40 # The frequency with which the model is saved, in steps. save_model_steps: 5 # The name of the architecture to train model_name: ${DEFAULT:model_name} # The dimensions of net input vectors, it is just used by svm dataset # which of input are sparse tensors now num_in_dimension: ${DEFAULT:num_in_dimension} # The dimensions of net output vector, it will be num of classes in image classify task num_out_dimension: ${DEFAULT:num_out_dimension} ##################################### # Training Optimization Configure # ##################################### # The number of samples in each batch batch_size: ${DEFAULT:train_batch_size} # The maximum number of training steps max_number_of_steps: ${DEFAULT:max_number_of_steps} # The weight decay on the model weights #weight_decay: 0.00000001 weight_decay: None # The decay to use for the moving average. If left as None, then moving averages are not used moving_average_decay: None # ***************** learning rate options ***************** # # Initial learning rate init_learning_rate: ${DEFAULT:init_learning_rate} # Specifies how the learning rate is decayed. One of "fixed", "exponential" or "polynomial" learning_rate_decay_type: fixed # Learning rate decay factor learning_rate_decay_factor: 0.1 num_learning_rate_warmup_epochs: None # The minimal end learning rate used by a polynomial decay learning rate end_learning_rate: 0.0001 # Number of epochs after which learning rate decays num_epochs_per_decay: 10 # A boolean, whether or not it should cycle beyond decay_steps learning_rate_polynomial_decay_cycle: False # ******************* optimizer options ******************* # # The name of the optimizer, one of the following: # "adadelta", "adagrad", "adam", "ftrl", "momentum", "sgd" or "rmsprop" #optimizer: weight_decay_adam optimizer: adam #optimizer: sgd # Epsilon term for the optimizer, used for adadelta, adam, rmsprop opt_epsilon: 1e-6 # conf for adadelta # The decay rate for adadelta adadelta_rho: 0.95 # Starting value for the AdaGrad accumulators adagrad_initial_accumulator_value: 0.1 # conf for adam # The exponential decay rate for the 1st moment estimates adam_beta1: 0.9 # The exponential decay rate for the 2nd moment estimates adam_beta2: 0.999 adam_weight_decay: 0.01 #adam_exclude_from_weight_decay: LayerNorm,layer_norm,bias # conf for ftrl # The learning rate power ftrl_learning_rate_power: -0.1 # Starting value for the FTRL accumulators ftrl_initial_accumulator_value: 0.1 # The FTRL l1 regularization strength ftrl_l1: 0.0 # The FTRL l2 regularization strength ftrl_l2: 0.01 # conf for momentum # The momentum for the MomentumOptimizer and RMSPropOptimizer momentum: 0.9 # conf for rmsprop # Decay term for RMSProp rmsprop_decay: 0.9 # Number of model clones to deploy num_gpus: 1 # The frequency with which logs are trace. trace_every_n_steps: 5 [Evaluate] ####################### # Dataset Configure # ####################### # The name of the dataset to load dataset_name: ${DEFAULT:dataset_name} # The name of the train/test split #dataset_split_name: validation dataset_split_name: train # The glob pattern for data path, `file_pattern' must contain only one "%s" # which is the placeholder for split name (such as 'train', 'validation') file_pattern: ${DEFAULT:file_pattern} #reader: dataset | pyreader | async | datafeed | sync data_reader: datafeed #local-cpu | local-gpu platform: local-cpu file_list: ../tmp/data/poi/raw//poi_sample.test # The file type or record file_type: text # kv path, used in image_sim kv_path: ${DEFAULT:kv_path} # The number of input sample for evaluation num_samples: ${DEFAULT:num_samples_eval} # The number of parallel readers that read data from the dataset num_readers: 2 # The number of threads used to create the batches num_preprocessing_threads: 2 # Number of epochs from dataset source num_epochs_input: 1 # The name of the architecture to evaluate model_name: ${DEFAULT:model_name} # The dimensions of net input vectors, it is just used by svm dataset # which of input are sparse tensors now num_in_dimension: ${DEFAULT:num_in_dimension} # The dimensions of net output vector, it will be num of classes in image classify task num_out_dimension: ${DEFAULT:num_out_dimension} # Directory where the results are saved to eval_dir: ${Train:train_dir}/epoch # The number of samples in each batch batch_size: ${DEFAULT:eval_batch_size}