# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os import six import ast import copy import numpy as np import paddle.fluid as fluid def cast_fp32_to_fp16(exe, main_program): print("Cast parameters to float16 data format.") for param in main_program.global_block().all_parameters(): if not param.name.endswith(".master"): param_t = fluid.global_scope().find_var(param.name).get_tensor() data = np.array(param_t) if param.name.find("layer_norm") == -1: param_t.set(np.float16(data).view(np.uint16), exe.place) master_param_var = fluid.global_scope().find_var(param.name + ".master") if master_param_var is not None: master_param_var.get_tensor().set(np.float32(data), exe.place) def init_checkpoint(exe, init_checkpoint_path, main_program, use_fp16=False): assert os.path.exists( init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path def existed_persitables(var): if not fluid.io.is_persistable(var): return False if os.path.exists(os.path.join(init_checkpoint_path, var.name)): print("INIT {}".format(var.name)) return True fluid.load( main_program, init_checkpoint_path, exe) print("Load model from {}".format(init_checkpoint_path)) if use_fp16: cast_fp32_to_fp16(exe, main_program) def init_pretraining_params(exe, pretraining_params_path, main_program, use_fp16=False): assert os.path.exists(pretraining_params_path + ".params" ), "[%s] cann't be found." % (pretraining_params_path + ".params" ) program_state = fluid.load_program_state( pretraining_params_path ) fluid.set_program_state( main_program, program_state) print("Load pretraining parameters from {}.".format( pretraining_params_path)) if use_fp16: cast_fp32_to_fp16(exe, main_program)