class Dataset: def _reader_creator(self, file_list, is_infer): def reader(): for file in file_list: with open(file, 'r') as f: for line in f: features = line.rstrip('\n').split('\t') dense_feature = map(float, features[0].split(',')) sparse_feature = map(lambda x: [int(x)], features[1].split(',')) if not is_infer: label = [float(features[2])] yield [dense_feature ] + sparse_feature + [label] else: yield [dense_feature] + sparse_feature return reader def train(self, file_list): return self._reader_creator(file_list, False) def test(self, file_list): return self._reader_creator(file_list, False) def infer(self, file_list): return self._reader_creator(file_list, True)