# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import os import sys import random import time import math from functools import partial import numpy as np import paddle from paddle.io import DataLoader from paddle.metric import Metric, Accuracy, Precision, Recall from paddlenlp.datasets import GlueCoLA, GlueSST2, GlueMRPC, GlueSTSB, GlueQQP, GlueMNLI, GlueQNLI, GlueRTE from paddlenlp.data import Stack, Tuple, Pad from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer from paddlenlp.transformers import ElectraForSequenceClassification, ElectraTokenizer from paddlenlp.transformers import ErnieForSequenceClassification, ErnieTokenizer from paddlenlp.metrics import AccuracyAndF1, Mcc, PearsonAndSpearman FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) TASK_CLASSES = { "cola": (GlueCoLA, Mcc), "sst-2": (GlueSST2, Accuracy), "mrpc": (GlueMRPC, AccuracyAndF1), "sts-b": (GlueSTSB, PearsonAndSpearman), "qqp": (GlueQQP, AccuracyAndF1), "mnli": (GlueMNLI, Accuracy), "qnli": (GlueQNLI, Accuracy), "rte": (GlueRTE, Accuracy), } MODEL_CLASSES = { "bert": (BertForSequenceClassification, BertTokenizer), "ernie": (ErnieForSequenceClassification, ErnieTokenizer) } def parse_args(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(TASK_CLASSES.keys()), ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join( sum([ list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values() ], [])), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--learning_rate", default=1e-4, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--num_train_epochs", default=3, type=int, help="Total number of training epochs to perform.", ) parser.add_argument( "--logging_steps", type=int, default=100, help="Log every X updates steps.") parser.add_argument( "--save_steps", type=int, default=100, help="Save checkpoint every X updates steps.") parser.add_argument( "--batch_size", default=32, type=int, help="Batch size per GPU/CPU for training.", ) parser.add_argument( "--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument( "--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps. If > 0: Override warmup_proportion" ) parser.add_argument( "--warmup_proportion", default=0., type=float, help="Linear warmup proportion over total steps.") parser.add_argument( "--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--seed", default=42, type=int, help="random seed for initialization") parser.add_argument( "--n_cards", default=1, type=int, help="Number cards for the training, only support multi cards in the gpu." ) parser.add_argument( "--select_device", type=str, default="gpu", help="Device for selecting for the training.") args = parser.parse_args() return args def set_seed(args): # Use the same data seed(for data shuffle) for all procs to guarantee data # consistency after sharding. random.seed(args.seed) np.random.seed(args.seed) # Maybe different op seeds(for dropout) for different procs is better. By: # `paddle.seed(args.seed + paddle.distributed.get_rank())` paddle.seed(args.seed) def evaluate(model, loss_fct, metric, data_loader): model.eval() metric.reset() for batch in data_loader: input_ids, segment_ids, labels = batch logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) correct = metric.compute(logits, labels) metric.update(correct) res = metric.accumulate() if isinstance(metric, AccuracyAndF1): logger.info( "eval loss: %f, acc: %s, precision: %s, recall: %s, f1: %s, acc and f1: %s." % (loss.numpy(), res[0], res[1], res[2], res[3], res[4])) elif isinstance(metric, Mcc): logger.info("eval loss: %f, mcc: %s." % (loss.numpy(), res[0])) elif isinstance(metric, PearsonAndSpearman): logger.info( "eval loss: %f, pearson: %s, spearman: %s, pearson and spearman: %s." % (loss.numpy(), res[0], res[1], res[2])) else: logger.info("eval loss: %f, acc: %s." % (loss.numpy(), res)) model.train() def convert_example(example, tokenizer, label_list, max_seq_length=512, is_test=False): """convert a glue example into necessary features""" def _truncate_seqs(seqs, max_seq_length): if len(seqs) == 1: # single sentence # Account for [CLS] and [SEP] with "- 2" seqs[0] = seqs[0][0:(max_seq_length - 2)] else: # Sentence pair # Account for [CLS], [SEP], [SEP] with "- 3" tokens_a, tokens_b = seqs max_seq_length -= 3 while True: # Truncate with longest_first strategy total_length = len(tokens_a) + len(tokens_b) if total_length <= max_seq_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() return seqs def _concat_seqs(seqs, separators, seq_mask=0, separator_mask=1): concat = sum((seq + sep for sep, seq in zip(separators, seqs)), []) segment_ids = sum( ([i] * (len(seq) + len(sep)) for i, (sep, seq) in enumerate(zip(separators, seqs))), []) if isinstance(seq_mask, int): seq_mask = [[seq_mask] * len(seq) for seq in seqs] if isinstance(separator_mask, int): separator_mask = [[separator_mask] * len(sep) for sep in separators] p_mask = sum((s_mask + mask for sep, seq, s_mask, mask in zip( separators, seqs, seq_mask, separator_mask)), []) return concat, segment_ids, p_mask if not is_test: # `label_list == None` is for regression task label_dtype = "int64" if label_list else "float32" # Get the label label = example[-1] example = example[:-1] # Create label maps if classification task if label_list: label_map = {} for (i, l) in enumerate(label_list): label_map[l] = i label = label_map[label] label = np.array([label], dtype=label_dtype) # Tokenize raw text tokens_raw = [tokenizer(l) for l in example] # Truncate to the truncate_length, tokens_trun = _truncate_seqs(tokens_raw, max_seq_length) # Concate the sequences with special tokens tokens_trun[0] = [tokenizer.cls_token] + tokens_trun[0] tokens, segment_ids, _ = _concat_seqs(tokens_trun, [[tokenizer.sep_token]] * len(tokens_trun)) # Convert the token to ids input_ids = tokenizer.convert_tokens_to_ids(tokens) valid_length = len(input_ids) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. # input_mask = [1] * len(input_ids) if not is_test: return input_ids, segment_ids, valid_length, label else: return input_ids, segment_ids, valid_length def do_train(args): paddle.set_device(args.select_device) if paddle.distributed.get_world_size() > 1: paddle.distributed.init_parallel_env() set_seed(args) args.task_name = args.task_name.lower() dataset_class, metric_class = TASK_CLASSES[args.task_name] args.model_type = args.model_type.lower() model_class, tokenizer_class = MODEL_CLASSES[args.model_type] train_dataset = dataset_class.get_datasets(["train"]) tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) trans_func = partial( convert_example, tokenizer=tokenizer, label_list=train_dataset.get_labels(), max_seq_length=args.max_seq_length) train_dataset = train_dataset.apply(trans_func, lazy=True) train_batch_sampler = paddle.io.DistributedBatchSampler( train_dataset, batch_size=args.batch_size, shuffle=True) batchify_fn = lambda samples, fn=Tuple( Pad(axis=0, pad_val=tokenizer.pad_token_id), # input Pad(axis=0, pad_val=tokenizer.pad_token_id), # segment Stack(), # length Stack(dtype="int64" if train_dataset.get_labels() else "float32") # label ): [data for i, data in enumerate(fn(samples)) if i != 2] train_data_loader = DataLoader( dataset=train_dataset, batch_sampler=train_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) if args.task_name == "mnli": dev_dataset_matched, dev_dataset_mismatched = dataset_class.get_datasets( ["dev_matched", "dev_mismatched"]) dev_dataset_matched = dev_dataset_matched.apply(trans_func, lazy=True) dev_dataset_mismatched = dev_dataset_mismatched.apply( trans_func, lazy=True) dev_batch_sampler_matched = paddle.io.BatchSampler( dev_dataset_matched, batch_size=args.batch_size, shuffle=False) dev_data_loader_matched = DataLoader( dataset=dev_dataset_matched, batch_sampler=dev_batch_sampler_matched, collate_fn=batchify_fn, num_workers=0, return_list=True) dev_batch_sampler_mismatched = paddle.io.BatchSampler( dev_dataset_mismatched, batch_size=args.batch_size, shuffle=False) dev_data_loader_mismatched = DataLoader( dataset=dev_dataset_mismatched, batch_sampler=dev_batch_sampler_mismatched, collate_fn=batchify_fn, num_workers=0, return_list=True) else: dev_dataset = dataset_class.get_datasets(["dev"]) dev_dataset = dev_dataset.apply(trans_func, lazy=True) dev_batch_sampler = paddle.io.BatchSampler( dev_dataset, batch_size=args.batch_size, shuffle=False) dev_data_loader = DataLoader( dataset=dev_dataset, batch_sampler=dev_batch_sampler, collate_fn=batchify_fn, num_workers=0, return_list=True) num_classes = 1 if train_dataset.get_labels() == None else len( train_dataset.get_labels()) model = model_class.from_pretrained( args.model_name_or_path, num_classes=num_classes) if paddle.distributed.get_world_size() > 1: model = paddle.DataParallel(model) num_training_steps = args.max_steps if args.max_steps > 0 else ( len(train_data_loader) * args.num_train_epochs) warmup_steps = args.warmup_steps if args.warmup_steps > 0 else ( int(math.floor(num_training_steps * args.warmup_proportion))) lr_scheduler = paddle.optimizer.lr.LambdaDecay( args.learning_rate, lambda current_step, num_warmup_steps=warmup_steps, num_training_steps=num_training_steps : float( current_step) / float(max(1, num_warmup_steps)) if current_step < num_warmup_steps else max( 0.0, float(num_training_steps - current_step) / float( max(1, num_training_steps - num_warmup_steps)))) optimizer = paddle.optimizer.AdamW( learning_rate=lr_scheduler, beta1=0.9, beta2=0.999, epsilon=args.adam_epsilon, parameters=model.parameters(), weight_decay=args.weight_decay, apply_decay_param_fun=lambda x: x in [ p.name for n, p in model.named_parameters() if not any(nd in n for nd in ["bias", "norm"]) ]) loss_fct = paddle.nn.loss.CrossEntropyLoss() if train_dataset.get_labels( ) else paddle.nn.loss.MSELoss() metric = metric_class() global_step = 0 tic_train = time.time() for epoch in range(args.num_train_epochs): for step, batch in enumerate(train_data_loader): global_step += 1 input_ids, segment_ids, labels = batch logits = model(input_ids, segment_ids) loss = loss_fct(logits, labels) loss.backward() optimizer.step() lr_scheduler.step() optimizer.clear_gradients() if global_step % args.logging_steps == 0: logger.info( "global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s" % (global_step, num_training_steps, epoch, step, paddle.distributed.get_rank(), loss, optimizer.get_lr(), args.logging_steps / (time.time() - tic_train))) tic_train = time.time() if global_step % args.save_steps == 0: tic_eval = time.time() if args.task_name == "mnli": evaluate(model, loss_fct, metric, dev_data_loader_matched) evaluate(model, loss_fct, metric, dev_data_loader_mismatched) logger.info("eval done total : %s s" % (time.time() - tic_eval)) else: evaluate(model, loss_fct, metric, dev_data_loader) logger.info("eval done total : %s s" % (time.time() - tic_eval)) if (not args.n_cards > 1) or paddle.distributed.get_rank() == 0: output_dir = os.path.join(args.output_dir, "%s_ft_model_%d.pdparams" % (args.task_name, global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) # Need better way to get inner model of DataParallel model_to_save = model._layers if isinstance( model, paddle.DataParallel) else model model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) def print_arguments(args): """print arguments""" print('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).items()): print('%s: %s' % (arg, value)) print('------------------------------------------------') if __name__ == "__main__": args = parse_args() print_arguments(args) if args.n_cards > 1 and args.select_device == "gpu": paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_cards) else: do_train(args)