"""Contains DeepSpeech2 layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.v2 as paddle def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride, padding, act): """Convolution layer with batch normalization. :param input: Input layer. :type input: LayerOutput :param filter_size: The x dimension of a filter kernel. Or input a tuple for two image dimension. :type filter_size: int|tuple|list :param num_channels_in: Number of input channels. :type num_channels_in: int :type num_channels_out: Number of output channels. :type num_channels_in: out :param padding: The x dimension of the padding. Or input a tuple for two image dimension. :type padding: int|tuple|list :param act: Activation type. :type act: BaseActivation :return: Batch norm layer after convolution layer. :rtype: LayerOutput """ conv_layer = paddle.layer.img_conv( input=input, filter_size=filter_size, num_channels=num_channels_in, num_filters=num_channels_out, stride=stride, padding=padding, act=paddle.activation.Linear(), bias_attr=False) return paddle.layer.batch_norm(input=conv_layer, act=act) def bidirectional_simple_rnn_bn_layer(name, input, size, act): """Bidirectonal simple rnn layer with sequence-wise batch normalization. The batch normalization is only performed on input-state weights. :param name: Name of the layer. :type name: string :param input: Input layer. :type input: LayerOutput :param size: Number of RNN cells. :type size: int :param act: Activation type. :type act: BaseActivation :return: Bidirectional simple rnn layer. :rtype: LayerOutput """ # input-hidden weights shared across bi-direcitonal rnn. input_proj = paddle.layer.fc( input=input, size=size, act=paddle.activation.Linear(), bias_attr=False) # batch norm is only performed on input-state projection input_proj_bn = paddle.layer.batch_norm( input=input_proj, act=paddle.activation.Linear()) # forward and backward in time forward_simple_rnn = paddle.layer.recurrent( input=input_proj_bn, act=act, reverse=False) backward_simple_rnn = paddle.layer.recurrent( input=input_proj_bn, act=act, reverse=True) return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn]) def bidirectional_gru_bn_layer(name, input, size, act): """Bidirectonal gru layer with sequence-wise batch normalization. The batch normalization is only performed on input-state weights. :param name: Name of the layer. :type name: string :param input: Input layer. :type input: LayerOutput :param size: Number of RNN cells. :type size: int :param act: Activation type. :type act: BaseActivation :return: Bidirectional simple rnn layer. :rtype: LayerOutput """ # input-hidden weights shared across bi-direcitonal rnn. input_proj = paddle.layer.fc( input=input, size=size * 3, act=paddle.activation.Linear(), bias_attr=False) # batch norm is only performed on input-state projection input_proj_bn = paddle.layer.batch_norm( input=input_proj, act=paddle.activation.Linear()) # forward and backward in time forward_gru = paddle.layer.grumemory( input=input_proj_bn, act=act, reverse=False) backward_gru = paddle.layer.grumemory( input=input_proj_bn, act=act, reverse=True) return paddle.layer.concat(input=[forward_gru, backward_gru]) def conv_group(input, num_stacks): """Convolution group with stacked convolution layers. :param input: Input layer. :type input: LayerOutput :param num_stacks: Number of stacked convolution layers. :type num_stacks: int :return: Output layer of the convolution group. :rtype: LayerOutput """ conv = conv_bn_layer( input=input, filter_size=(11, 41), num_channels_in=1, num_channels_out=32, stride=(2, 2), padding=(5, 20), act=paddle.activation.Relu()) for i in xrange(num_stacks - 1): conv = conv_bn_layer( input=conv, filter_size=(11, 21), num_channels_in=32, num_channels_out=32, stride=(1, 2), padding=(5, 10), act=paddle.activation.Relu()) output_num_channels = 32 output_height = 160 // pow(2, num_stacks) + 1 return conv, output_num_channels, output_height def rnn_group(input, size, num_stacks, use_gru): """RNN group with stacked bidirectional simple RNN layers. :param input: Input layer. :type input: LayerOutput :param size: Number of RNN cells in each layer. :type size: int :param num_stacks: Number of stacked rnn layers. :type num_stacks: int :param use_gru: Use gru if set True. Use simple rnn if set False. :type use_gru: bool :return: Output layer of the RNN group. :rtype: LayerOutput """ output = input for i in xrange(num_stacks): if use_gru: output = bidirectional_gru_bn_layer( name=str(i), input=output, size=size, act=paddle.activation.Relu()) else: output = bidirectional_simple_rnn_bn_layer( name=str(i), input=output, size=size, act=paddle.activation.Relu()) return output def deep_speech2(audio_data, text_data, dict_size, num_conv_layers=2, num_rnn_layers=3, rnn_size=256, use_gru=True): """ The whole DeepSpeech2 model structure (a simplified version). :param audio_data: Audio spectrogram data layer. :type audio_data: LayerOutput :param text_data: Transcription text data layer. :type text_data: LayerOutput :param dict_size: Dictionary size for tokenized transcription. :type dict_size: int :param num_conv_layers: Number of stacking convolution layers. :type num_conv_layers: int :param num_rnn_layers: Number of stacking RNN layers. :type num_rnn_layers: int :param rnn_size: RNN layer size (number of RNN cells). :type rnn_size: int :param use_gru: Use gru if set True. Use simple rnn if set False. :type use_gru: bool :return: A tuple of an output unnormalized log probability layer ( before softmax) and a ctc cost layer. :rtype: tuple of LayerOutput """ # convolution group conv_group_output, conv_group_num_channels, conv_group_height = conv_group( input=audio_data, num_stacks=num_conv_layers) # convert data form convolution feature map to sequence of vectors conv2seq = paddle.layer.block_expand( input=conv_group_output, num_channels=conv_group_num_channels, stride_x=1, stride_y=1, block_x=1, block_y=conv_group_height) # rnn group rnn_group_output = rnn_group( input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers, use_gru=use_gru) fc = paddle.layer.fc( input=rnn_group_output, size=dict_size + 1, act=paddle.activation.Linear(), bias_attr=True) # probability distribution with softmax log_probs = paddle.layer.mixed( input=paddle.layer.identity_projection(input=fc), act=paddle.activation.Softmax()) # ctc cost ctc_loss = paddle.layer.warp_ctc( input=fc, label=text_data, size=dict_size + 1, blank=dict_size, norm_by_times=True) return log_probs, ctc_loss