# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict from ppdet.core.workspace import register __all__ = ['YOLOv3'] @register class YOLOv3(object): """ YOLOv3 network, see https://arxiv.org/abs/1804.02767 Args: backbone (object): an backbone instance yolo_head (object): an `YOLOv3Head` instance """ __category__ = 'architecture' __inject__ = ['backbone', 'yolo_head'] def __init__(self, backbone, yolo_head='YOLOv3Head'): super(YOLOv3, self).__init__() self.backbone = backbone self.yolo_head = yolo_head def build(self, feed_vars, mode='train'): im = feed_vars['image'] body_feats = self.backbone(im) if isinstance(body_feats, OrderedDict): body_feat_names = list(body_feats.keys()) body_feats = [body_feats[name] for name in body_feat_names] if mode == 'train': gt_box = feed_vars['gt_box'] gt_label = feed_vars['gt_label'] gt_score = feed_vars['gt_score'] return { 'loss': self.yolo_head.get_loss(body_feats, gt_box, gt_label, gt_score) } else: im_shape = feed_vars['im_shape'] return self.yolo_head.get_prediction(body_feats, im_shape) def train(self, feed_vars): return self.build(feed_vars, mode='train') def eval(self, feed_vars): return self.build(feed_vars, mode='test') def test(self, feed_vars): return self.build(feed_vars, mode='test')