# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from ppdet.core.workspace import register from ppdet.modeling.ops import SSDOutputDecoder, SSDMetric __all__ = ['SSD'] @register class SSD(object): """ Single Shot MultiBox Detector, see https://arxiv.org/abs/1512.02325 Args: backbone (object): backbone instance multi_box_head (object): `MultiBoxHead` instance output_decoder (object): `SSDOutputDecoder` instance metric (object): `SSDMetric` instance for training num_classes (int): number of output classes """ __category__ = 'architecture' __inject__ = ['backbone', 'multi_box_head', 'output_decoder', 'metric'] def __init__(self, backbone, multi_box_head='MultiBoxHead', output_decoder=SSDOutputDecoder().__dict__, metric=SSDMetric().__dict__, num_classes=21): super(SSD, self).__init__() self.backbone = backbone self.multi_box_head = multi_box_head self.num_classes = num_classes self.output_decoder = output_decoder self.metric = metric if isinstance(output_decoder, dict): self.output_decoder = SSDOutputDecoder(**output_decoder) if isinstance(metric, dict): self.metric = SSDMetric(**metric) def _forward(self, feed_vars, mode='train'): im = feed_vars['image'] if mode == 'train' or mode == 'eval': gt_box = feed_vars['gt_box'] gt_label = feed_vars['gt_label'] difficult = feed_vars['is_difficult'] body_feats = self.backbone(im) locs, confs, box, box_var = self.multi_box_head( inputs=body_feats, image=im, num_classes=self.num_classes) if mode == 'train': loss = fluid.layers.ssd_loss(locs, confs, gt_box, gt_label, box, box_var) loss = fluid.layers.reduce_sum(loss) return {'loss': loss} else: pred = self.output_decoder(locs, confs, box, box_var) if mode == 'eval': map_eval = self.metric( pred, gt_label, gt_box, difficult, class_num=self.num_classes) _, accum_map = map_eval.get_map_var() return {'map': map_eval, 'accum_map': accum_map} else: return {'bbox': pred} def train(self, feed_vars): return self._forward(feed_vars, 'train') def eval(self, feed_vars): return self._forward(feed_vars, 'eval') def test(self, feed_vars): return self._forward(feed_vars, 'test')