architecture: RetinaNet train_feed: FasterRCNNTrainFeed eval_feed: FasterRCNNEvalFeed test_feed: FasterRCNNTestFeed max_iters: 90000 use_gpu: true pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar weights: output/retinanet_r101_fpn_1x/model_final log_smooth_window: 20 snapshot_iter: 10000 metric: COCO save_dir: output RetinaNet: backbone: ResNet fpn: FPN retina_head: RetinaHead ResNet: norm_type: affine_channel norm_decay: 0. depth: 101 feature_maps: [3, 4, 5] freeze_at: 2 FPN: max_level: 7 min_level: 3 num_chan: 256 spatial_scale: [0.03125, 0.0625, 0.125] has_extra_convs: true RetinaHead: num_convs_per_octave: 4 num_chan: 256 max_level: 7 min_level: 3 prior_prob: 0.01 base_scale: 4 num_scales_per_octave: 3 num_classes: 81 anchor_generator: aspect_ratios: [1.0, 2.0, 0.5] variance: [1.0, 1.0, 1.0, 1.0] target_assign: positive_overlap: 0.5 negative_overlap: 0.4 gamma: 2.0 alpha: 0.25 sigma: 3.0151134457776365 output_decoder: score_thresh: 0.05 nms_thresh: 0.5 pre_nms_top_n: 1000 detections_per_im: 100 nms_eta: 1.0 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [60000, 80000] - !LinearWarmup start_factor: 0.3333333333333333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 FasterRCNNTrainFeed: batch_size: 2 batch_transforms: - !PadBatch pad_to_stride: 128 dataset: dataset_dir: data/coco annotation: annotations/instances_train2017.json image_dir: train2017 num_workers: 2 FasterRCNNEvalFeed: batch_size: 2 batch_transforms: - !PadBatch pad_to_stride: 128 dataset: dataset_dir: data/coco annotation: annotations/instances_val2017.json image_dir: val2017 num_workers: 2 FasterRCNNTestFeed: batch_size: 1 batch_transforms: - !PadBatch pad_to_stride: 128 dataset: annotation: annotations/instances_val2017.json num_workers: 2