import argparse import ast import multiprocessing import numpy as np import os import sys sys.path.append("../../models/neural_machine_translation/transformer/") from functools import partial import paddle import paddle.fluid as fluid import reader from config import * from desc import * from model import fast_decode as fast_decoder from train import pad_batch_data, prepare_data_generator def parse_args(): parser = argparse.ArgumentParser("Training for Transformer.") parser.add_argument( "--src_vocab_fpath", type=str, required=True, help="The path of vocabulary file of source language.") parser.add_argument( "--trg_vocab_fpath", type=str, required=True, help="The path of vocabulary file of target language.") parser.add_argument( "--test_file_pattern", type=str, required=True, help="The pattern to match test data files.") parser.add_argument( "--batch_size", type=int, default=50, help="The number of examples in one run for sequence generation.") parser.add_argument( "--pool_size", type=int, default=10000, help="The buffer size to pool data.") parser.add_argument( "--special_token", type=str, default=["", "", ""], nargs=3, help="The , and tokens in the dictionary.") parser.add_argument( "--token_delimiter", type=lambda x: str(x.encode().decode("unicode-escape")), default=" ", help="The delimiter used to split tokens in source or target sentences. " "For EN-DE BPE data we provided, use spaces as token delimiter. ") parser.add_argument( "--use_mem_opt", type=ast.literal_eval, default=True, help="The flag indicating whether to use memory optimization.") parser.add_argument( "--use_py_reader", type=ast.literal_eval, default=True, help="The flag indicating whether to use py_reader.") parser.add_argument( "--use_parallel_exe", type=ast.literal_eval, default=False, help="The flag indicating whether to use ParallelExecutor.") parser.add_argument( 'opts', help='See config.py for all options', default=None, nargs=argparse.REMAINDER) args = parser.parse_args() # Append args related to dict src_dict = reader.DataReader.load_dict(args.src_vocab_fpath) trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath) dict_args = [ "src_vocab_size", str(len(src_dict)), "trg_vocab_size", str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]), "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx", str(src_dict[args.special_token[2]]) ] merge_cfg_from_list(args.opts + dict_args, [InferTaskConfig, ModelHyperParams]) return args def post_process_seq(seq, bos_idx=ModelHyperParams.bos_idx, eos_idx=ModelHyperParams.eos_idx, output_bos=InferTaskConfig.output_bos, output_eos=InferTaskConfig.output_eos): """ Post-process the beam-search decoded sequence. Truncate from the first and remove the and tokens currently. """ eos_pos = len(seq) - 1 for i, idx in enumerate(seq): if idx == eos_idx: eos_pos = i break seq = [ idx for idx in seq[:eos_pos + 1] if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx) ] return seq def prepare_batch_input(insts, data_input_names, src_pad_idx, bos_idx, n_head, d_model, place): """ Put all padded data needed by beam search decoder into a dict. """ src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data( [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False) # start tokens trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64") trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, 1, 1]).astype("float32") trg_word = trg_word.reshape(-1, 1, 1) src_word = src_word.reshape(-1, src_max_len, 1) src_pos = src_pos.reshape(-1, src_max_len, 1) def to_lodtensor(data, place, lod=None): data_tensor = fluid.LoDTensor() data_tensor.set(data, place) if lod is not None: data_tensor.set_lod(lod) return data_tensor # beamsearch_op must use tensors with lod init_score = to_lodtensor( np.zeros_like( trg_word, dtype="float32").reshape(-1, 1), place, [range(trg_word.shape[0] + 1)] * 2) trg_word = to_lodtensor(trg_word, place, [range(trg_word.shape[0] + 1)] * 2) init_idx = np.asarray(range(len(insts)), dtype="int32") data_input_dict = dict( zip(data_input_names, [ src_word, src_pos, src_slf_attn_bias, trg_word, init_score, init_idx, trg_src_attn_bias ])) return data_input_dict def prepare_feed_dict_list(data_generator, count, place): """ Prepare the list of feed dict for multi-devices. """ feed_dict_list = [] if data_generator is not None: # use_py_reader == False data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields data = next(data_generator) for idx, data_buffer in enumerate(data): data_input_dict = prepare_batch_input( data_buffer, data_input_names, ModelHyperParams.eos_idx, ModelHyperParams.bos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model, place) feed_dict_list.append(data_input_dict) return feed_dict_list if len(feed_dict_list) == count else None def py_reader_provider_wrapper(data_reader, place): """ Data provider needed by fluid.layers.py_reader. """ def py_reader_provider(): data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields for batch_id, data in enumerate(data_reader()): data_input_dict = prepare_batch_input( data, data_input_names, ModelHyperParams.eos_idx, ModelHyperParams.bos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model, place) yield [data_input_dict[item] for item in data_input_names] return py_reader_provider def fast_infer(args): """ Inference by beam search decoder based solely on Fluid operators. """ out_ids, out_scores, pyreader = fast_decoder( ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 1, ModelHyperParams.n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, ModelHyperParams.prepostprocess_dropout, ModelHyperParams.attention_dropout, ModelHyperParams.relu_dropout, ModelHyperParams.preprocess_cmd, ModelHyperParams.postprocess_cmd, ModelHyperParams.weight_sharing, InferTaskConfig.beam_size, InferTaskConfig.max_out_len, ModelHyperParams.bos_idx, ModelHyperParams.eos_idx, use_py_reader=args.use_py_reader) # This is used here to set dropout to the test mode. infer_program = fluid.default_main_program().clone(for_test=True) if args.use_mem_opt: fluid.memory_optimize(infer_program) if InferTaskConfig.use_gpu: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) fluid.io.load_vars( exe, InferTaskConfig.model_path, vars=[ var for var in infer_program.list_vars() if isinstance(var, fluid.framework.Parameter) ]) exec_strategy = fluid.ExecutionStrategy() # For faster executor exec_strategy.use_experimental_executor = True exec_strategy.num_threads = 1 build_strategy = fluid.BuildStrategy() infer_exe = fluid.ParallelExecutor( use_cuda=TrainTaskConfig.use_gpu, main_program=infer_program, build_strategy=build_strategy, exec_strategy=exec_strategy) # data reader settings for inference args.train_file_pattern = args.test_file_pattern args.use_token_batch = False args.sort_type = reader.SortType.NONE args.shuffle = False args.shuffle_batch = False test_data = prepare_data_generator( args, is_test=False, count=dev_count, pyreader=pyreader, py_reader_provider_wrapper=py_reader_provider_wrapper, place=place) if args.use_py_reader: pyreader.start() data_generator = None else: data_generator = test_data() trg_idx2word = reader.DataReader.load_dict( dict_path=args.trg_vocab_fpath, reverse=True) while True: try: feed_dict_list = prepare_feed_dict_list(data_generator, dev_count, place) if args.use_parallel_exe: seq_ids, seq_scores = infer_exe.run( fetch_list=[out_ids.name, out_scores.name], feed=feed_dict_list, return_numpy=False) else: seq_ids, seq_scores = exe.run( program=infer_program, fetch_list=[out_ids.name, out_scores.name], feed=feed_dict_list[0] if feed_dict_list is not None else None, return_numpy=False, use_program_cache=False) seq_ids_list, seq_scores_list = [seq_ids], [ seq_scores ] if isinstance(seq_ids, paddle.fluid.LoDTensor) else (seq_ids, seq_scores) for seq_ids, seq_scores in zip(seq_ids_list, seq_scores_list): # How to parse the results: # Suppose the lod of seq_ids is: # [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]] # then from lod[0]: # there are 2 source sentences, beam width is 3. # from lod[1]: # the first source sentence has 3 hyps; the lengths are 12, 12, 16 # the second source sentence has 3 hyps; the lengths are 14, 13, 15 hyps = [[] for i in range(len(seq_ids.lod()[0]) - 1)] scores = [[] for i in range(len(seq_scores.lod()[0]) - 1)] for i in range(len(seq_ids.lod()[0]) - 1): # for each source sentence start = seq_ids.lod()[0][i] end = seq_ids.lod()[0][i + 1] for j in range(end - start): # for each candidate sub_start = seq_ids.lod()[1][start + j] sub_end = seq_ids.lod()[1][start + j + 1] hyps[i].append(" ".join([ trg_idx2word[idx] for idx in post_process_seq( np.array(seq_ids)[sub_start:sub_end]) ])) scores[i].append(np.array(seq_scores)[sub_end - 1]) print(hyps[i][-1]) if len(hyps[i]) >= InferTaskConfig.n_best: break except (StopIteration, fluid.core.EOFException): # The data pass is over. if args.use_py_reader: pyreader.reset() break if __name__ == "__main__": args = parse_args() fast_infer(args)