"""Parse the log for tuning and plot error surface.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import re import numpy as np import argparse import functools import _init_paths from utils.utility import add_arguments, print_arguments import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) add_arg("log_path", str, '', "log path for parsing") add_arg("fig_name", str, 'error_surface.png', "name of output figure") args = parser.parse_args() def plot_error_surface(num_alphas, alphas, betas, error_rate_type, err_ave): fig = plt.figure(figsize=(8, 6)) ax = Axes3D(fig) num_betas = len(alphas) // num_alphas alphas_2d = np.reshape(alphas, (num_alphas, num_betas)) betas_2d = np.reshape(betas, (num_alphas, num_betas)) err_ave_2d = np.reshape(err_ave, (num_alphas, num_betas)) ax.plot_surface( alphas_2d, betas_2d, err_ave_2d, rstride=1, cstride=1, alpha=0.8, cmap='rainbow') z_label = 'WER' if error_rate_type == 'wer' else 'CER' ax.set_xlabel('alpha', fontsize=12) ax.set_ylabel('beta', fontsize=12) ax.set_zlabel(z_label, fontsize=12) plt.savefig(args.fig_name) plt.show() def parse_log(): if not os.path.isfile(args.log_path): raise IOError("Invaid model path: %s" % args.log_path) error_rate_type = None num_alphas, num_betas = 0, 0 alphas, betas, err_ave = [], [], [] err_rate_pat = re.compile( '\(alpha, beta\) = ' '\([-+]?\d+(?:\.\d+)?, [-+]?\d+(?:\.\d+)?\), \[[wcer]') num_pat = re.compile(r'[-+]?\d+(?:\.\d+)?') with open(args.log_path, "r") as log_file: line = log_file.readline() while line: if line.find("error_rate_type:") != -1: error_rate_type = line.strip().split()[1] elif line.find("num_alphas:") != -1: num_alphas = int(line.strip().split()[1]) elif line.find("num_betas:") != -1: num_betas = int(line.strip().split()[1]) elif err_rate_pat.match(line) is not None: tuples = num_pat.findall(line) alphas.append(float(tuples[0])) betas.append(float(tuples[1])) err_ave.append(float(tuples[2])) line = log_file.readline() if error_rate_type == None: raise ValueError("Illegal log format, cannot find error_rate_type") if num_alphas <= 0: raise ValueError("Illegal log format, invalid num_alphas") if num_betas <= 0: raise ValueError("Illegal log format, invalid num_betas") if alphas == []: raise ValueError("Illegal log format, cannot find grid search result") if num_alphas * num_betas != len(alphas): raise ValueError("Illegal log format, data's shape mismatches") return num_alphas, alphas, betas, error_rate_type, err_ave, def main(): print_arguments(args) num_alphas, alphas, betas, error_rate_type, err_ave = parse_log() plot_error_surface(num_alphas, alphas, betas, error_rate_type, err_ave) if __name__ == '__main__': main()