# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import io import json import sys import re import numpy as np import time import shutil import collections import six import pickle import paddle.fluid as fluid import reader from models.dyg.model_builder import RCNN from config import cfg from utility import parse_args, print_arguments, SmoothedValue, TrainingStats, now_time, check_gpu from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval, Params from data_utils import DatasetPath from eval_helper import (get_dt_res, segm_results, get_segms_res) def eval(): devices_num = 1 total_batch_size = 1 #devices_num * cfg.TRAIN.im_per_batch data_path = DatasetPath('val') test_list = data_path.get_file_list() cocoGt = COCO(test_list) num_id_to_cat_id_map = {i + 1: v for i, v in enumerate(cocoGt.getCatIds())} use_random = True if cfg.enable_ce: use_random = False if cfg.parallel: strategy = fluid.dygraph.parallel.prepare_context() print("Execute Parallel Mode!!!") # Model model = RCNN("faster_rcnn", cfg=cfg, mode='eval', use_random=use_random) if cfg.parallel: model = fluid.dygraph.parallel.DataParallel(model, strategy) if False: #cfg.pretrained_model: model_state = model.state_dict() ckpt_file = open(cfg.pretrained_model, 'r') w_dict = pickle.load(ckpt_file) for k, v in w_dict.items(): for wk in model_state.keys(): res = re.search(k, wk) if res is not None: print("load: ", k, v.shape, np.mean(np.abs(v)), " --> ", wk, model_state[wk].shape) model_state[wk] = v break model.set_dict(model_state) elif cfg.resume_model: para_state_dict, opti_state_dict = fluid.load_dygraph("model_final") #print(para_state_dict.keys()) #ckpt_file = open("dyg_mask_rcnn.pkl", "w") new_dict = {} for k, v in para_state_dict.items(): if "conv2d" in k: new_k = k.split('.')[1] elif 'linear' in k: new_k = k.split('.')[1] elif 'conv2dtranspose' in k: new_k = k.split('.')[1] else: new_k = k print("save weight from %s to %s" % (k, new_k)) new_dict[new_k] = v.numpy() #print(new_dict.keys()) #pickle.dump(new_dict, ckpt_file) np.savez("dyg_mask_rcnn.npz", **new_dict) model.set_dict(para_state_dict) test_reader = reader.test(batch_size=total_batch_size) if cfg.parallel: train_reader = fluid.contrib.reader.distributed_batch_reader( train_reader) eval_start = time.time() dts_res = [] segms_res = [] for iter_id, data in enumerate(test_reader()): start = time.time() image_data = np.array([x[0] for x in data]).astype('float32') image_info_data = np.array([x[1] for x in data]).astype('float32') image_id_data = np.array([x[2] for x in data]).astype('int32') if cfg.enable_ce: print("image_data: ", np.abs(image_data).mean(), image_data.shape) print("im_info_dta: ", np.abs(image_info_data).mean(), image_info_data.shape, image_info_data) print("img_id: ", image_id_data, image_id_data.shape) # forward outputs = model(image_data, image_info_data, image_id_data) pred_boxes_v = outputs[1].numpy() if cfg.MASK_ON: masks_v = outputs[2].numpy() new_lod = list(outputs[0].numpy()) #new_lod = [[0, pred_boxes_v.shape[0]]] #pred_boxes_v.lod() nmsed_out = pred_boxes_v dts_res += get_dt_res(total_batch_size, new_lod, nmsed_out, data, num_id_to_cat_id_map) if cfg.MASK_ON and np.array(masks_v).shape != (1, 1): segms_out = segm_results(nmsed_out, masks_v, image_info_data) segms_res += get_segms_res(total_batch_size, new_lod, segms_out, data, num_id_to_cat_id_map) end = time.time() print('batch id: {}, time: {}'.format(iter_id, end - start)) eval_end = time.time() total_time = eval_end - eval_start print('average time of eval is: {}'.format(total_time / (iter_id + 1))) assert len(dts_res) > 0, "The number of valid bbox detected is zero.\n \ Please use reasonable model and check input data." if cfg.MASK_ON: assert len( segms_res) > 0, "The number of valid mask detected is zero.\n \ Please use reasonable model and check input data." with io.open("detection_bbox_result.json", 'w') as outfile: encode_func = unicode if six.PY2 else str outfile.write(encode_func(json.dumps(dts_res))) print("start evaluate bbox using coco api") cocoDt = cocoGt.loadRes("detection_bbox_result.json") cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() if cfg.MASK_ON: with io.open("detection_segms_result.json", 'w') as outfile: encode_func = unicode if six.PY2 else str outfile.write(encode_func(json.dumps(segms_res))) print("start evaluate mask using coco api") cocoDt = cocoGt.loadRes("detection_segms_result.json") cocoEval = COCOeval(cocoGt, cocoDt, 'segm') cocoEval.evaluate() cocoEval.accumulate() if __name__ == '__main__': args = parse_args() print_arguments(args) place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) \ if cfg.parallel else fluid.CUDAPlace(0) \ if cfg.use_gpu else fluid.CPUPlace() with fluid.dygraph.guard(place): eval()