import paddle.v2 as paddle __all__ = ['xception'] def img_separable_conv_bn(name, input, num_channels, num_out_channels, filter_size, stride, padding, act): conv = paddle.networks.img_separable_conv( name=name, input=input, num_channels=num_channels, num_out_channels=num_out_channels, filter_size=filter_size, stride=stride, padding=padding, act=paddle.activation.Linear()) norm = paddle.layer.batch_norm(name=name + '_norm', input=conv, act=act) return norm def img_conv_bn(name, input, num_channels, num_filters, filter_size, stride, padding, act): conv = paddle.layer.img_conv( name=name, input=input, num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=padding, act=paddle.activation.Linear()) norm = paddle.layer.batch_norm(name=name + '_norm', input=conv, act=act) return norm def conv_block0(input, group, num_channels, num_filters, num_filters2=None, filter_size=3, pool_padding=0, entry_relu=True): if num_filters2 is None: num_filters2 = num_filters if entry_relu: act_input = paddle.layer.mixed( input=paddle.layer.identity_projection(input=input), act=paddle.activation.Relu()) else: act_input = input conv0 = img_separable_conv_bn( name='xception_block{0}_conv0'.format(group), input=act_input, num_channels=num_channels, num_out_channels=num_filters, filter_size=filter_size, stride=1, padding=(filter_size - 1) / 2, act=paddle.activation.Relu()) conv1 = img_separable_conv_bn( name='xception_block{0}_conv1'.format(group), input=conv0, num_channels=num_filters, num_out_channels=num_filters2, filter_size=filter_size, stride=1, padding=(filter_size - 1) / 2, act=paddle.activation.Linear()) pool0 = paddle.layer.img_pool( name='xception_block{0}_pool'.format(group), input=conv1, pool_size=3, stride=2, padding=pool_padding, num_channels=num_filters2, pool_type=paddle.pooling.CudnnMax()) shortcut = img_conv_bn( name='xception_block{0}_shortcut'.format(group), input=input, num_channels=num_channels, num_filters=num_filters2, filter_size=1, stride=2, padding=0, act=paddle.activation.Linear()) return paddle.layer.addto( input=[pool0, shortcut], act=paddle.activation.Linear()) def conv_block1(input, group, num_channels, num_filters, filter_size=3): act_input = paddle.layer.mixed( input=paddle.layer.identity_projection(input=input), act=paddle.activation.Relu()) conv0 = img_separable_conv_bn( name='xception_block{0}_conv0'.format(group), input=act_input, num_channels=num_channels, num_out_channels=num_filters, filter_size=filter_size, stride=1, padding=(filter_size - 1) / 2, act=paddle.activation.Relu()) conv1 = img_separable_conv_bn( name='xception_block{0}_conv1'.format(group), input=conv0, num_channels=num_filters, num_out_channels=num_filters, filter_size=filter_size, stride=1, padding=(filter_size - 1) / 2, act=paddle.activation.Relu()) conv2 = img_separable_conv_bn( name='xception_block{0}_conv2'.format(group), input=conv1, num_channels=num_filters, num_out_channels=num_filters, filter_size=filter_size, stride=1, padding=(filter_size - 1) / 2, act=paddle.activation.Linear()) shortcut = input return paddle.layer.addto( input=[conv2, shortcut], act=paddle.activation.Linear()) def xception(input, class_dim): conv = img_conv_bn( name='xception_conv0', input=input, num_channels=3, num_filters=32, filter_size=3, stride=2, padding=1, act=paddle.activation.Relu()) conv = img_conv_bn( name='xception_conv1', input=conv, num_channels=32, num_filters=64, filter_size=3, stride=1, padding=1, act=paddle.activation.Relu()) conv = conv_block0( input=conv, group=2, num_channels=64, num_filters=128, entry_relu=False) conv = conv_block0(input=conv, group=3, num_channels=128, num_filters=256) conv = conv_block0(input=conv, group=4, num_channels=256, num_filters=728) for group in range(5, 13): conv = conv_block1( input=conv, group=group, num_channels=728, num_filters=728) conv = conv_block0( input=conv, group=13, num_channels=728, num_filters=728, num_filters2=1024) conv = img_separable_conv_bn( name='xception_conv14', input=conv, num_channels=1024, num_out_channels=1536, filter_size=3, stride=1, padding=1, act=paddle.activation.Relu()) conv = img_separable_conv_bn( name='xception_conv15', input=conv, num_channels=1536, num_out_channels=2048, filter_size=3, stride=1, padding=1, act=paddle.activation.Relu()) pool = paddle.layer.img_pool( name='xception_global_pool', input=conv, pool_size=7, stride=1, num_channels=2048, pool_type=paddle.pooling.CudnnAvg()) out = paddle.layer.fc( name='xception_fc', input=pool, size=class_dim, act=paddle.activation.Softmax()) return out