# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # See the License for the specific language governing permissions and # limitations under the License. """Ernie model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import json import six import logging import paddle.fluid as fluid from io import open from model.transformer_encoder import encoder, pre_process_layer log = logging.getLogger(__name__) class ErnieConfig(object): def __init__(self, config_path): self._config_dict = self._parse(config_path) def _parse(self, config_path): try: with open(config_path, 'r', encoding='utf8') as json_file: config_dict = json.load(json_file) except Exception: raise IOError("Error in parsing Ernie model config file '%s'" % config_path) else: return config_dict def __getitem__(self, key): return self._config_dict.get(key, None) def print_config(self): for arg, value in sorted(six.iteritems(self._config_dict)): log.info('%s: %s' % (arg, value)) log.info('------------------------------------------------') class ErnieModel(object): def __init__(self, src_ids, position_ids, sentence_ids, task_ids, input_mask, config, weight_sharing=True, use_fp16=False): self._emb_size = config['hidden_size'] self._n_layer = config['num_hidden_layers'] self._n_head = config['num_attention_heads'] self._voc_size = config['vocab_size'] self._max_position_seq_len = config['max_position_embeddings'] if config['sent_type_vocab_size']: self._sent_types = config['sent_type_vocab_size'] else: self._sent_types = config['type_vocab_size'] self._use_task_id = config['use_task_id'] if self._use_task_id: self._task_types = config['task_type_vocab_size'] self._hidden_act = config['hidden_act'] self._prepostprocess_dropout = config['hidden_dropout_prob'] self._attention_dropout = config['attention_probs_dropout_prob'] self._weight_sharing = weight_sharing self._word_emb_name = "word_embedding" self._pos_emb_name = "pos_embedding" self._sent_emb_name = "sent_embedding" self._task_emb_name = "task_embedding" self._dtype = "float16" if use_fp16 else "float32" self._emb_dtype = "float32" # Initialize all weigths by truncated normal initializer, and all biases # will be initialized by constant zero by default. self._param_initializer = fluid.initializer.TruncatedNormal( scale=config['initializer_range']) self._build_model(src_ids, position_ids, sentence_ids, task_ids, input_mask) def _build_model(self, src_ids, position_ids, sentence_ids, task_ids, input_mask): # padding id in vocabulary must be set to 0 emb_out = fluid.layers.embedding( input=src_ids, size=[self._voc_size, self._emb_size], dtype=self._emb_dtype, param_attr=fluid.ParamAttr( name=self._word_emb_name, initializer=self._param_initializer), is_sparse=False) position_emb_out = fluid.layers.embedding( input=position_ids, size=[self._max_position_seq_len, self._emb_size], dtype=self._emb_dtype, param_attr=fluid.ParamAttr( name=self._pos_emb_name, initializer=self._param_initializer)) sent_emb_out = fluid.layers.embedding( sentence_ids, size=[self._sent_types, self._emb_size], dtype=self._emb_dtype, param_attr=fluid.ParamAttr( name=self._sent_emb_name, initializer=self._param_initializer)) emb_out = emb_out + position_emb_out emb_out = emb_out + sent_emb_out if self._use_task_id: task_emb_out = fluid.layers.embedding( task_ids, size=[self._task_types, self._emb_size], dtype=self._emb_dtype, param_attr=fluid.ParamAttr( name=self._task_emb_name, initializer=self._param_initializer)) emb_out = emb_out + task_emb_out emb_out = pre_process_layer( emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder') if self._dtype == "float16": emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype) input_mask = fluid.layers.cast(x=input_mask, dtype=self._dtype) self_attn_mask = fluid.layers.matmul( x=input_mask, y=input_mask, transpose_y=True) self_attn_mask = fluid.layers.scale( x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False) n_head_self_attn_mask = fluid.layers.stack( x=[self_attn_mask] * self._n_head, axis=1) n_head_self_attn_mask.stop_gradient = True self._enc_out = encoder( enc_input=emb_out, attn_bias=n_head_self_attn_mask, n_layer=self._n_layer, n_head=self._n_head, d_key=self._emb_size // self._n_head, d_value=self._emb_size // self._n_head, d_model=self._emb_size, d_inner_hid=self._emb_size * 4, prepostprocess_dropout=self._prepostprocess_dropout, attention_dropout=self._attention_dropout, relu_dropout=0, hidden_act=self._hidden_act, preprocess_cmd="", postprocess_cmd="dan", param_initializer=self._param_initializer, name='encoder') if self._dtype == "float16": self._enc_out = fluid.layers.cast( x=self._enc_out, dtype=self._emb_dtype) def get_sequence_output(self): return self._enc_out def get_pooled_output(self): """Get the first feature of each sequence for classification""" next_sent_feat = fluid.layers.slice( input=self._enc_out, axes=[1], starts=[0], ends=[1]) next_sent_feat = fluid.layers.fc( input=next_sent_feat, size=self._emb_size, act="tanh", param_attr=fluid.ParamAttr( name="pooled_fc.w_0", initializer=self._param_initializer), bias_attr="pooled_fc.b_0") return next_sent_feat def get_lm_output(self, mask_label, mask_pos): """Get the loss & accuracy for pretraining""" mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32') # extract the first token feature in each sentence self.next_sent_feat = self.get_pooled_output() reshaped_emb_out = fluid.layers.reshape( x=self._enc_out, shape=[-1, self._emb_size]) # extract masked tokens' feature mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos) # transform: fc mask_trans_feat = fluid.layers.fc( input=mask_feat, size=self._emb_size, act=self._hidden_act, param_attr=fluid.ParamAttr( name='mask_lm_trans_fc.w_0', initializer=self._param_initializer), bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0')) # transform: layer norm mask_trans_feat = fluid.layers.layer_norm( mask_trans_feat, begin_norm_axis=len(mask_trans_feat.shape) - 1, param_attr=fluid.ParamAttr( name='mask_lm_trans_layer_norm_scale', initializer=fluid.initializer.Constant(1.)), bias_attr=fluid.ParamAttr( name='mask_lm_trans_layer_norm_bias', initializer=fluid.initializer.Constant(1.))) # transform: layer norm #mask_trans_feat = pre_process_layer( # mask_trans_feat, 'n', name='mask_lm_trans') mask_lm_out_bias_attr = fluid.ParamAttr( name="mask_lm_out_fc.b_0", initializer=fluid.initializer.Constant(value=0.0)) if self._weight_sharing: fc_out = fluid.layers.matmul( x=mask_trans_feat, y=fluid.default_main_program().global_block().var( self._word_emb_name), transpose_y=True) fc_out += fluid.layers.create_parameter( shape=[self._voc_size], dtype=self._emb_dtype, attr=mask_lm_out_bias_attr, is_bias=True) else: fc_out = fluid.layers.fc(input=mask_trans_feat, size=self._voc_size, param_attr=fluid.ParamAttr( name="mask_lm_out_fc.w_0", initializer=self._param_initializer), bias_attr=mask_lm_out_bias_attr) mask_lm_loss = fluid.layers.softmax_with_cross_entropy( logits=fc_out, label=mask_label) mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss) return mean_mask_lm_loss def get_task_output(self, task, task_labels): task_fc_out = fluid.layers.fc(input=self.next_sent_feat, size=task["num_labels"], param_attr=fluid.ParamAttr( name=task["task_name"] + "_fc.w_0", initializer=self._param_initializer), bias_attr=task["task_name"] + "_fc.b_0") task_loss, task_softmax = fluid.layers.softmax_with_cross_entropy( logits=task_fc_out, label=task_labels, return_softmax=True) task_acc = fluid.layers.accuracy(input=task_softmax, label=task_labels) mean_task_loss = fluid.layers.mean(task_loss) return mean_task_loss, task_acc