import gradio as gr import base64 from io import BytesIO from PIL import Image from paddlecv import PaddleCV ocr = PaddleCV(task_name="PP-OCRv3") def image_to_base64(image): # 输入为PIL读取的图片,输出为base64格式 byte_data = BytesIO() # 创建一个字节流管道 image.save(byte_data, format="JPEG") # 将图片数据存入字节流管道 byte_data = byte_data.getvalue() # 从字节流管道中获取二进制 base64_str = base64.b64encode(byte_data).decode("ascii") # 二进制转base64 return base64_str # UGC: Define the inference fn() for your models def model_inference(image): result = ocr(image)[0] im_show = Image.open('output/tmp.jpg') res = [] for i in range(len(result['dt_polys'])): res.append( dict( boxes=result['dt_polys'][i], txt=result['rec_text'][i], score=result['rec_score'][i])) json_out = {"base64": image_to_base64(im_show), "result": res} return im_show, json_out def clear_all(): return None, None, None with gr.Blocks() as demo: gr.Markdown("PP-OCRv3") with gr.Column(scale=1, min_width=100): img_in = gr.Image(label="Input") with gr.Row(): btn1 = gr.Button("Clear") btn2 = gr.Button("Submit") img_out = gr.Image(label="Output").style(height=400) json_out = gr.JSON(label="jsonOutput") btn2.click(fn=model_inference, inputs=img_in, outputs=[img_out, json_out]) btn1.click(fn=clear_all, inputs=None, outputs=[img_in, img_out, json_out]) gr.Button.style(1) demo.launch()