DATA_PATH=$1 MODEL_PATH=$2 TRAIN_MANI=${DATA_PATH}/cloud.train.manifest DEV_MANI=${DATA_PATH}/cloud.test.manifest TRAIN_TAR=${DATA_PATH}/cloud.train.tar DEV_TAR=${DATA_PATH}/cloud.test.tar VOCAB_PATH=${DATA_PATH}/vocab.txt MEAN_STD_FILE=${DATA_PATH}/mean_std.npz # split train data for each pcloud node python ./cloud/split_data.py \ --in_manifest_path=$TRAIN_MANI \ --data_tar_path=$TRAIN_TAR \ --out_manifest_path='./local.train.manifest' # split dev data for each pcloud node python ./cloud/split_data.py \ --in_manifest_path=$DEV_MANI \ --data_tar_path=$DEV_TAR \ --out_manifest_path='./local.test.manifest' python train.py \ --use_gpu=1 \ --mean_std_filepath=$MEAN_STD_FILE \ --train_manifest_path='./local.train.manifest' \ --dev_manifest_path='./local.test.manifest' \ --vocab_filepath=$VOCAB_PATH \ --output_model_dir=${MODEL_PATH}