# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #order: standard library, third party, local library import os import time import sys import math import argparse import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.initializer import MSRA from paddle.fluid.param_attr import ParamAttr from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.dygraph.base import to_variable from paddle.fluid import framework import reader from utils import * from mobilenet_v1 import * from mobilenet_v2 import * from imagenet_dataset import ImageNetDataset from paddle.io import DataLoader args = parse_args() if int(os.getenv("PADDLE_TRAINER_ID", 0)) == 0: print_arguments(args) class TimeCostAverage(object): def __init__(self): self.reset() def reset(self): self.cnt = 0 self.total_time = 0 def record(self, usetime): self.cnt += 1 self.total_time += usetime def get_average(self): if self.cnt == 0: return 0 return self.total_time / self.cnt def eval(net, test_data_loader, eop): total_loss = 0.0 total_acc1 = 0.0 total_acc5 = 0.0 total_sample = 0 t_last = 0 place_num = paddle.fluid.core.get_cuda_device_count( ) if args.use_gpu else int(os.environ.get('CPU_NUM', 1)) batch_start = time.time() for img, label in test_data_loader(): batch_reader_end = time.time() label = to_variable(label.numpy().astype('int64').reshape( int(args.batch_size // place_num), 1)) out = net(img) softmax_out = fluid.layers.softmax(out, use_cudnn=False) loss = fluid.layers.cross_entropy(input=softmax_out, label=label) avg_loss = fluid.layers.mean(x=loss) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) total_loss += avg_loss.numpy() total_acc1 += acc_top1.numpy() total_acc5 += acc_top5.numpy() test_batch_cost = time.time() - batch_start total_sample += 1 print( "test | epoch %d, avg_loss %.5f, acc_top1 %.5f, acc_top5 %.5f, batch_cost_time: %.5f s, reader_cost: %.5f s" % (eop, avg_loss.numpy(), acc_top1.numpy(), acc_top5.numpy(), test_batch_cost, batch_reader_end - batch_start)) sys.stdout.flush() batch_start = time.time() print("final eval loss %0.3f acc1 %0.3f acc5 %0.3f" % \ (total_loss / total_sample, \ total_acc1 / total_sample, total_acc5 / total_sample)) sys.stdout.flush() def train_mobilenet(): if not args.use_gpu: place = fluid.CPUPlace() elif not args.use_data_parallel: place = fluid.CUDAPlace(0) else: place = fluid.CUDAPlace(fluid.dygraph.parallel.Env().dev_id) with fluid.dygraph.guard(place): # 1. init net and optimizer place_num = paddle.fluid.core.get_cuda_device_count( ) if args.use_gpu else int(os.environ.get('CPU_NUM', 1)) if args.ce: print("ce mode") seed = 33 np.random.seed(seed) fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed if args.use_data_parallel: strategy = fluid.dygraph.parallel.prepare_context() if args.model == "MobileNetV1": net = MobileNetV1(class_dim=args.class_dim, scale=1.0) model_path_pre = 'mobilenet_v1' elif args.model == "MobileNetV2": net = MobileNetV2(class_dim=args.class_dim, scale=1.0) model_path_pre = 'mobilenet_v2' else: print( "wrong model name, please try model = MobileNetV1 or MobileNetV2" ) exit() optimizer = create_optimizer(args=args, parameter_list=net.parameters()) if args.use_data_parallel: net = fluid.dygraph.parallel.DataParallel(net, strategy) # 2. load checkpoint if args.checkpoint: assert os.path.exists(args.checkpoint + ".pdparams"), \ "Given dir {}.pdparams not exist.".format(args.checkpoint) assert os.path.exists(args.checkpoint + ".pdopt"), \ "Given dir {}.pdopt not exist.".format(args.checkpoint) para_dict, opti_dict = fluid.dygraph.load_dygraph(args.checkpoint) net.set_dict(para_dict) optimizer.set_dict(opti_dict) # 3. reader test_data_loader = utility.create_data_loader(is_train=False, args=args) num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) imagenet_reader = reader.ImageNetReader(seed=0, place_num=place_num) train_dataset = ImageNetDataset( os.path.join(args.data_dir, "train"), mode='train') train_data_loader = DataLoader( train_dataset, batch_size=args.batch_size, places=place, shuffle=True, drop_last=True, num_workers=10) test_dataset = ImageNetDataset( os.path.join(args.data_dir, "val"), mode='val') test_data_loader = DataLoader( test_dataset, batch_size=args.batch_size, places=place, shuffle=True, drop_last=True, num_workers=1) # 4. train loop total_batch_num = 0 #this is for benchmark for eop in range(args.num_epochs): epoch_start = time.time() if num_trainers > 1: imagenet_reader.set_shuffle_seed(eop + ( args.random_seed if args.random_seed else 0)) net.train() total_loss = 0.0 total_acc1 = 0.0 total_acc5 = 0.0 total_sample = 0 batch_id = 0 t_last = 0 # 4.1 for each batch, call net() , backward(), and minimize() batch_cost_avg = TimeCostAverage() batch_reader_avg = TimeCostAverage() batch_net_avg = TimeCostAverage() batch_backward_avg = TimeCostAverage() batch_start = time.time() for img, label in train_data_loader(): if args.max_iter and total_batch_num == args.max_iter: return batch_reader_end = time.time() # 4.1.1 call net() out = net(img) softmax_out = fluid.layers.softmax(out, use_cudnn=False) loss = fluid.layers.cross_entropy( input=softmax_out, label=label) avg_loss = fluid.layers.mean(x=loss) acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1) acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5) batch_net_end = time.time() # 4.1.2 call backward() if args.use_data_parallel: avg_loss = net.scale_loss(avg_loss) avg_loss.backward() net.apply_collective_grads() else: avg_loss.backward() batch_backward_end = time.time() # 4.1.3 call minimize() optimizer.minimize(avg_loss) net.clear_gradients() t2 = time.time() avg_loss_value = avg_loss.numpy() acc_top1_value = acc_top1.numpy() acc_top5_value = acc_top5.numpy() total_loss += avg_loss_value total_acc1 += acc_top1_value total_acc5 += acc_top5_value total_sample += 1 batch_id += 1 # NOTE: used for benchmark train_batch_cost = time.time() - batch_start batch_cost_avg.record(train_batch_cost) batch_reader_avg.record(batch_reader_end - batch_start) batch_net_avg.record(batch_net_end - batch_reader_end) batch_backward_avg.record(batch_backward_end - batch_net_end) total_batch_num = total_batch_num + 1 if batch_id % args.print_step == 0: ips = float(args.batch_size) / batch_cost_avg.get_average() print( "[Epoch %d, batch %d], avg_loss %.5f, acc_top1 %.5f, acc_top5 %.5f, batch_cost: %.5f sec, net_cost: %.5f sec, backward_cost: %.5f sec, reader_cost: %.5f sec, ips: %.5f images/sec" % (eop, batch_id, avg_loss_value, acc_top1_value, acc_top5_value, batch_cost_avg.get_average(), batch_net_avg.get_average(), batch_backward_avg.get_average(), batch_reader_avg.get_average(), ips)) sys.stdout.flush() batch_cost_avg.reset() batch_net_avg.reset() batch_backward_avg.reset() batch_reader_avg.reset() batch_start = time.time() if args.ce: print("kpis\ttrain_acc1\t%0.3f" % (total_acc1 / total_sample)) print("kpis\ttrain_acc5\t%0.3f" % (total_acc5 / total_sample)) print("kpis\ttrain_loss\t%0.3f" % (total_loss / total_sample)) train_epoch_cost = time.time() - epoch_start print( "[Epoch %d], loss %.5f, acc1 %.5f, acc5 %.5f, epoch_cost: %.5f s" % (eop, total_loss / total_sample, total_acc1 / total_sample, total_acc5 / total_sample, train_epoch_cost)) # 4.2 save checkpoint save_parameters = (not args.use_data_parallel) or ( args.use_data_parallel and fluid.dygraph.parallel.Env().local_rank == 0) if save_parameters: if not os.path.isdir(args.model_save_dir): os.makedirs(args.model_save_dir) model_path = os.path.join( args.model_save_dir, "_" + model_path_pre + "_epoch{}".format(eop)) fluid.dygraph.save_dygraph(net.state_dict(), model_path) fluid.dygraph.save_dygraph(optimizer.state_dict(), model_path) # 4.3 validation net.eval() eval(net, test_data_loader, eop) # 5. save final results save_parameters = (not args.use_data_parallel) or ( args.use_data_parallel and fluid.dygraph.parallel.Env().local_rank == 0) if save_parameters: model_path = os.path.join(args.model_save_dir, "_" + model_path_pre + "_final") fluid.dygraph.save_dygraph(net.state_dict(), model_path) if __name__ == '__main__': train_mobilenet()