# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Finetuning on SQuAD.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import sys if six.PY2: reload(sys) sys.setdefaultencoding('utf8') import argparse import collections import multiprocessing import os import time import numpy as np import paddle import paddle.fluid as fluid from reader.squad import DataProcessor, write_predictions from model.bert import BertConfig, BertModel from utils.args import ArgumentGroup, print_arguments, check_cuda from optimization import optimization from utils.init import init_pretraining_params, init_checkpoint # yapf: disable parser = argparse.ArgumentParser(__doc__) model_g = ArgumentGroup(parser, "model", "model configuration and paths.") model_g.add_arg("bert_config_path", str, None, "Path to the json file for bert model config.") model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.") model_g.add_arg("init_pretraining_params", str, None, "Init pre-training params which preforms fine-tuning from. If the " "arg 'init_checkpoint' has been set, this argument wouldn't be valid.") model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints.") train_g = ArgumentGroup(parser, "training", "training options.") train_g.add_arg("epoch", int, 3, "Number of epoches for fine-tuning.") train_g.add_arg("learning_rate", float, 5e-5, "Learning rate used to train with warmup.") train_g.add_arg("lr_scheduler", str, "linear_warmup_decay", "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay']) train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.") train_g.add_arg("warmup_proportion", float, 0.1, "Proportion of training steps to perform linear learning rate warmup for.") train_g.add_arg("save_steps", int, 1000, "The steps interval to save checkpoints.") train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.") train_g.add_arg("use_dynamic_loss_scaling", bool, True, "Whether to use dynamic loss scaling in mixed precision training.") train_g.add_arg("init_loss_scaling", float, 2**32, "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.") train_g.add_arg("incr_every_n_steps", int, 1000, "Increases loss scaling every n consecutive.") train_g.add_arg("decr_every_n_nan_or_inf", int, 2, "Decreases loss scaling every n accumulated steps with nan or inf gradients.") train_g.add_arg("incr_ratio", float, 2.0, "The multiplier to use when increasing the loss scaling.") train_g.add_arg("decr_ratio", float, 0.8, "The less-than-one-multiplier to use when decreasing.") log_g = ArgumentGroup(parser, "logging", "logging related.") log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.") log_g.add_arg("verbose", bool, False, "Whether to output verbose log.") data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options") data_g.add_arg("train_file", str, None, "SQuAD json for training. E.g., train-v1.1.json.") data_g.add_arg("predict_file", str, None, "SQuAD json for predictions. E.g. dev-v1.1.json or test-v1.1.json.") data_g.add_arg("vocab_path", str, None, "Vocabulary path.") data_g.add_arg("version_2_with_negative", bool, False, "If true, the SQuAD examples contain some that do not have an answer. If using squad v2.0, it should be set true.") data_g.add_arg("max_seq_len", int, 512, "Number of words of the longest seqence.") data_g.add_arg("max_query_length", int, 64, "Max query length.") data_g.add_arg("max_answer_length", int, 30, "Max answer length.") data_g.add_arg("batch_size", int, 12, "Total examples' number in batch for training. see also --in_tokens.") data_g.add_arg("in_tokens", bool, False, "If set, the batch size will be the maximum number of tokens in one batch. " "Otherwise, it will be the maximum number of examples in one batch.") data_g.add_arg("do_lower_case", bool, True, "Whether to lower case the input text. Should be True for uncased models and False for cased models.") data_g.add_arg("doc_stride", int, 128, "When splitting up a long document into chunks, how much stride to take between chunks.") data_g.add_arg("n_best_size", int, 20, "The total number of n-best predictions to generate in the nbest_predictions.json output file.") data_g.add_arg("null_score_diff_threshold", float, 0.0, "If null_score - best_non_null is greater than the threshold predict null.") data_g.add_arg("random_seed", int, 0, "Random seed.") run_type_g = ArgumentGroup(parser, "run_type", "running type options.") run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.") run_type_g.add_arg("use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).") run_type_g.add_arg("num_iteration_per_drop_scope", int, 1, "Ihe iteration intervals to clean up temporary variables.") run_type_g.add_arg("do_train", bool, True, "Whether to perform training.") run_type_g.add_arg("do_predict", bool, True, "Whether to perform prediction.") args = parser.parse_args() # yapf: enable. def create_model(bert_config, is_training=False): if is_training: input_fields = { 'names': ['src_ids', 'pos_ids', 'sent_ids', 'input_mask', 'start_positions', 'end_positions'], 'shapes': [[None, None], [None, None], [None, None], [None, args.max_seq_len, 1], [None, 1], [None, 1]], 'dtypes': [ 'int64', 'int64', 'int64', 'float32', 'int64', 'int64'], 'lod_levels': [0, 0, 0, 0, 0, 0], } else: input_fields = { 'names': ['src_ids', 'pos_ids', 'sent_ids', 'input_mask', 'unique_id'], 'shapes': [[None, None], [None, None], [None, None], [None, args.max_seq_len, 1], [None, 1]], 'dtypes': [ 'int64', 'int64', 'int64', 'float32', 'int64'], 'lod_levels': [0, 0, 0, 0, 0], } inputs = [fluid.data(name=input_fields['names'][i], shape=input_fields['shapes'][i], dtype=input_fields['dtypes'][i], lod_level=input_fields['lod_levels'][i]) for i in range(len(input_fields['names']))] data_loader = fluid.io.DataLoader.from_generator(feed_list=inputs, capacity=50, iterable=False) if is_training: (src_ids, pos_ids, sent_ids, input_mask, start_positions, end_positions) = inputs else: (src_ids, pos_ids, sent_ids, input_mask, unique_id) = inputs bert = BertModel( src_ids=src_ids, position_ids=pos_ids, sentence_ids=sent_ids, input_mask=input_mask, config=bert_config, use_fp16=args.use_fp16) enc_out = bert.get_sequence_output() logits = fluid.layers.fc( input=enc_out, size=2, num_flatten_dims=2, param_attr=fluid.ParamAttr( name="cls_squad_out_w", initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name="cls_squad_out_b", initializer=fluid.initializer.Constant(0.))) logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1]) start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0) batch_ones = fluid.layers.fill_constant_batch_size_like( input=start_logits, dtype='int64', shape=[1], value=1) num_seqs = fluid.layers.reduce_sum(input=batch_ones) if is_training: def compute_loss(logits, positions): loss = fluid.layers.softmax_with_cross_entropy( logits=logits, label=positions) loss = fluid.layers.mean(x=loss) return loss start_loss = compute_loss(start_logits, start_positions) end_loss = compute_loss(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2.0 return data_loader, total_loss, num_seqs else: return data_loader, unique_id, start_logits, end_logits, num_seqs RawResult = collections.namedtuple("RawResult", ["unique_id", "start_logits", "end_logits"]) def predict(test_exe, test_program, test_data_loader, fetch_list, processor): if not os.path.exists(args.checkpoints): os.makedirs(args.checkpoints) output_prediction_file = os.path.join(args.checkpoints, "predictions.json") output_nbest_file = os.path.join(args.checkpoints, "nbest_predictions.json") output_null_log_odds_file = os.path.join(args.checkpoints, "null_odds.json") test_data_loader.start() all_results = [] time_begin = time.time() while True: try: np_unique_ids, np_start_logits, np_end_logits, np_num_seqs = test_exe.run( fetch_list=fetch_list, program=test_program) for idx in range(np_unique_ids.shape[0]): if len(all_results) % 1000 == 0: print("Processing example: %d" % len(all_results)) unique_id = int(np_unique_ids[idx]) start_logits = [float(x) for x in np_start_logits[idx].flat] end_logits = [float(x) for x in np_end_logits[idx].flat] all_results.append( RawResult( unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) except fluid.core.EOFException: test_data_loader.reset() break time_end = time.time() features = processor.get_features( processor.predict_examples, is_training=False) write_predictions(processor.predict_examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.version_2_with_negative, args.null_score_diff_threshold, args.verbose) def train(args): bert_config = BertConfig(args.bert_config_path) bert_config.print_config() if not (args.do_train or args.do_predict): raise ValueError("For args `do_train` and `do_predict`, at " "least one of them must be True.") if args.use_cuda: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) exe = fluid.Executor(place) processor = DataProcessor( vocab_path=args.vocab_path, do_lower_case=args.do_lower_case, max_seq_length=args.max_seq_len, in_tokens=args.in_tokens, doc_stride=args.doc_stride, max_query_length=args.max_query_length) startup_prog = fluid.Program() if args.random_seed is not None: startup_prog.random_seed = args.random_seed if args.do_train: train_data_generator = processor.data_generator( data_path=args.train_file, batch_size=args.batch_size, phase='train', shuffle=True, dev_count=dev_count, version_2_with_negative=args.version_2_with_negative, epoch=args.epoch) num_train_examples = processor.get_num_examples(phase='train') if args.in_tokens: max_train_steps = args.epoch * num_train_examples // ( args.batch_size // args.max_seq_len) // dev_count else: max_train_steps = args.epoch * num_train_examples // ( args.batch_size) // dev_count warmup_steps = int(max_train_steps * args.warmup_proportion) print("Device count: %d" % dev_count) print("Num train examples: %d" % num_train_examples) print("Max train steps: %d" % max_train_steps) print("Num warmup steps: %d" % warmup_steps) train_program = fluid.Program() with fluid.program_guard(train_program, startup_prog): with fluid.unique_name.guard(): train_data_loader, loss, num_seqs = create_model( bert_config=bert_config, is_training=True) scheduled_lr, loss_scaling = optimization( loss=loss, warmup_steps=warmup_steps, num_train_steps=max_train_steps, learning_rate=args.learning_rate, train_program=train_program, startup_prog=startup_prog, weight_decay=args.weight_decay, scheduler=args.lr_scheduler, use_fp16=args.use_fp16, use_dynamic_loss_scaling=args.use_dynamic_loss_scaling, init_loss_scaling=args.init_loss_scaling, incr_every_n_steps=args.incr_every_n_steps, decr_every_n_nan_or_inf=args.decr_every_n_nan_or_inf, incr_ratio=args.incr_ratio, decr_ratio=args.decr_ratio) if args.do_predict: test_prog = fluid.Program() with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard(): test_data_loader, unique_ids, start_logits, end_logits, num_seqs = create_model( bert_config=bert_config, is_training=False) test_prog = test_prog.clone(for_test=True) exe.run(startup_prog) if args.do_train: if args.init_checkpoint and args.init_pretraining_params: print( "WARNING: args 'init_checkpoint' and 'init_pretraining_params' " "both are set! Only arg 'init_checkpoint' is made valid.") if args.init_checkpoint: init_checkpoint( exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) elif args.init_pretraining_params: init_pretraining_params( exe, args.init_pretraining_params, main_program=startup_prog, use_fp16=args.use_fp16) elif args.do_predict: if not args.init_checkpoint: raise ValueError("args 'init_checkpoint' should be set if" "only doing prediction!") init_checkpoint( exe, args.init_checkpoint, main_program=startup_prog, use_fp16=args.use_fp16) if args.do_train: exec_strategy = fluid.ExecutionStrategy() exec_strategy.use_experimental_executor = args.use_fast_executor exec_strategy.num_threads = dev_count exec_strategy.num_iteration_per_drop_scope = args.num_iteration_per_drop_scope train_compiled_program = fluid.CompiledProgram(train_program).with_data_parallel( loss_name=loss.name, exec_strategy=exec_strategy) train_data_loader.set_batch_generator(train_data_generator, place) train_data_loader.start() steps = 0 total_cost, total_num_seqs = [], [] time_begin = time.time() while steps < max_train_steps: try: steps += 1 if steps % args.skip_steps == 0: if args.use_fp16: fetch_list = [loss.name, scheduled_lr.name, num_seqs.name, loss_scaling.name] else: fetch_list = [loss.name, scheduled_lr.name, num_seqs.name] else: fetch_list = [] outputs = exe.run(train_compiled_program, fetch_list=fetch_list) if steps % args.skip_steps == 0: if args.use_fp16: np_loss, np_lr, np_num_seqs, np_scaling = outputs else: np_loss, np_lr, np_num_seqs = outputs total_cost.extend(np_loss * np_num_seqs) total_num_seqs.extend(np_num_seqs) if args.verbose: verbose = "train data_loader queue size: %d, " % train_data_loader.queue.size( ) verbose += "learning rate: %f " % np_lr[0] if args.use_fp16: verbose += ", loss scaling: %f" % np_scaling[0] print(verbose) time_end = time.time() used_time = time_end - time_begin current_example, epoch = processor.get_train_progress() print("epoch: %d, progress: %d/%d, step: %d, loss: %f, " "speed: %f steps/s" % (epoch, current_example, num_train_examples, steps, np.sum(total_cost) / np.sum(total_num_seqs), args.skip_steps / used_time)) total_cost, total_num_seqs = [], [] time_begin = time.time() if steps % args.save_steps == 0 or steps == max_train_steps: save_path = os.path.join(args.checkpoints, "step_" + str(steps)) fluid.io.save_persistables(exe, save_path, train_program) except fluid.core.EOFException: save_path = os.path.join(args.checkpoints, "step_" + str(steps) + "_final") fluid.io.save_persistables(exe, save_path, train_program) train_data_loader.reset() break if args.do_predict: test_data_loader.set_batch_generator( processor.data_generator( data_path=args.predict_file, batch_size=args.batch_size, phase='predict', shuffle=False, dev_count=1, epoch=1), place) predict(exe, test_prog, test_data_loader, [ unique_ids.name, start_logits.name, end_logits.name, num_seqs.name ], processor) if __name__ == '__main__': print_arguments(args) check_cuda(args.use_cuda) train(args)