# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Model for classifier.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle.fluid as fluid from model.bert import BertModel def create_model(args, bert_config, num_labels, is_prediction=False): input_fields = { 'names': ['src_ids', 'pos_ids', 'sent_ids', 'input_mask', 'labels'], 'shapes': [[None, None], [None, None], [None, None], [None, args.max_seq_len, 1], [None, 1]], 'dtypes': ['int64', 'int64', 'int64', 'float32', 'int64'], 'lod_levels': [0, 0, 0, 0, 0], } inputs = [ fluid.data( name=input_fields['names'][i], shape=input_fields['shapes'][i], dtype=input_fields['dtypes'][i], lod_level=input_fields['lod_levels'][i]) for i in range(len(input_fields['names'])) ] (src_ids, pos_ids, sent_ids, input_mask, labels) = inputs data_loader = fluid.io.DataLoader.from_generator( feed_list=inputs, capacity=50, iterable=False) bert = BertModel( src_ids=src_ids, position_ids=pos_ids, sentence_ids=sent_ids, input_mask=input_mask, config=bert_config, use_fp16=args.use_fp16) cls_feats = bert.get_pooled_output() cls_feats = fluid.layers.dropout( x=cls_feats, dropout_prob=0.1, dropout_implementation="upscale_in_train") logits = fluid.layers.fc( input=cls_feats, num_flatten_dims=2, size=num_labels, param_attr=fluid.ParamAttr( name="cls_out_w", initializer=fluid.initializer.TruncatedNormal(scale=0.02)), bias_attr=fluid.ParamAttr( name="cls_out_b", initializer=fluid.initializer.Constant(0.))) if is_prediction: probs = fluid.layers.softmax(logits) feed_targets_name = [ src_ids.name, pos_ids.name, sent_ids.name, input_mask.name ] return data_loader, probs, feed_targets_name logits = fluid.layers.reshape(logits, [-1, num_labels], inplace=True) ce_loss, probs = fluid.layers.softmax_with_cross_entropy( logits=logits, label=labels, return_softmax=True) loss = fluid.layers.mean(x=ce_loss) num_seqs = fluid.layers.create_tensor(dtype='int64') accuracy = fluid.layers.accuracy(input=probs, label=labels, total=num_seqs) return data_loader, loss, probs, accuracy, num_seqs