from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import cv2 import tarfile import numpy as np from PIL import Image from os import path from paddle.dataset.image import load_image import paddle SOS = 0 EOS = 1 NUM_CLASSES = 95 DATA_SHAPE = [1, 48, 512] DATA_MD5 = "7256b1d5420d8c3e74815196e58cdad5" DATA_URL = "http://paddle-ocr-data.bj.bcebos.com/data.tar.gz" CACHE_DIR_NAME = "ctc_data" SAVED_FILE_NAME = "data.tar.gz" DATA_DIR_NAME = "data" TRAIN_DATA_DIR_NAME = "train_images" TEST_DATA_DIR_NAME = "test_images" TRAIN_LIST_FILE_NAME = "train.list" TEST_LIST_FILE_NAME = "test.list" class DataGenerator(object): def __init__(self, model="crnn_ctc"): self.model = model def train_reader(self, img_root_dir, img_label_list, batchsize, cycle, max_length, shuffle=True): ''' Reader interface for training. :param img_root_dir: The root path of the image for training. :type img_root_dir: str :param img_label_list: The path of the file for training. :type img_label_list: str :param cycle: If number of iterations is greater than dataset_size / batch_size it reiterates dataset over as many times as necessary. :type cycle: bool ''' img_label_lines = [] to_file = "tmp.txt" if not shuffle: cmd = "cat " + img_label_list + " | awk '{print $1,$2,$3,$4;}' > " + to_file elif batchsize == 1: cmd = "cat " + img_label_list + " | awk '{print $1,$2,$3,$4;}' | shuf > " + to_file else: #cmd1: partial shuffle cmd = "cat " + img_label_list + " | awk '{printf(\"%04d%.4f %s\\n\", $1, rand(), $0)}' | sort | sed 1,$((1 + RANDOM % 100))d | " #cmd2: batch merge and shuffle cmd += "awk '{printf $2\" \"$3\" \"$4\" \"$5\" \"; if(NR % " + str( batchsize) + " == 0) print \"\";}' | shuf | " #cmd3: batch split cmd += "awk '{if(NF == " + str( batchsize ) + " * 4) {for(i = 0; i < " + str( batchsize ) + "; i++) print $(4*i+1)\" \"$(4*i+2)\" \"$(4*i+3)\" \"$(4*i+4);}}' > " + to_file os.system(cmd) print("finish batch shuffle") img_label_lines = open(to_file, 'r').readlines() def reader(): sizes = len(img_label_lines) // batchsize if sizes == 0: raise ValueError('batchsize is bigger than the dataset size.') while True: for i in range(sizes): result = [] sz = [0, 0] max_len = 0 for k in range(batchsize): line = img_label_lines[i * batchsize + k] items = line.split(' ') label = [int(c) for c in items[-1].split(',')] max_len = max(max_len, len(label)) #print( "max len", max_len, i) max_length = max_len #mask = np.zeros( (batchsize, max_length)).astype('float32') for j in range(batchsize): line = img_label_lines[i * batchsize + j] items = line.split(' ') label = [int(c) for c in items[-1].split(',')] mask = np.zeros((max_len)).astype('float32') mask[:len(label) + 1] = 1.0 #mask[ j, :len(label) + 1] = 1.0 if max_length > len(label) + 1: extend_label = [EOS] * (max_length - len(label) - 1) label.extend(extend_label) else: label = label[0:max_length - 1] img = Image.open(os.path.join(img_root_dir, items[ 2])).convert('L') if j == 0: sz = img.size img = img.resize((sz[0], sz[1])) img = np.array(img) - 127.5 img = img[np.newaxis, ...] result.append([img, [SOS] + label, label + [EOS], mask]) yield result if not cycle: break return reader def test_reader(self, img_root_dir, img_label_list): ''' Reader interface for inference. :param img_root_dir: The root path of the images for training. :type img_root_dir: str :param img_label_list: The path of the file for testing. :type img_label_list: str ''' def reader(): for line in open(img_label_list): # h, w, img_name, labels items = line.split(' ') label = [int(c) for c in items[-1].split(',')] img = Image.open(os.path.join(img_root_dir, items[2])).convert( 'L') img = np.array(img) - 127.5 img = img[np.newaxis, ...] if self.model == "crnn_ctc": yield img, label else: yield img, [SOS] + label, label + [EOS] return reader def infer_reader(self, img_root_dir=None, img_label_list=None, cycle=False): '''A reader interface for inference. :param img_root_dir: The root path of the images for training. :type img_root_dir: str :param img_label_list: The path of the file for inference. It should be the path of file if img_root_dir was None. If img_label_list was set to None, it will read image path from stdin. :type img_root_dir: str :param cycle: If number of iterations is greater than dataset_size / batch_size it reiterates dataset over as many times as necessary. :type cycle: bool ''' def reader(): def yield_img_and_label(lines): for line in lines: if img_root_dir is not None: # h, w, img_name, labels img_name = line.split(' ')[2] img_path = os.path.join(img_root_dir, img_name) else: img_path = line.strip("\t\n\r") img = Image.open(img_path).convert('L') img = np.array(img) - 127.5 img = img[np.newaxis, ...] label = [int(c) for c in line.split(' ')[3].split(',')] yield img, label if img_label_list is not None: lines = [] with open(img_label_list) as f: lines = f.readlines() for img, label in yield_img_and_label(lines): yield img, label while cycle: for img, label in yield_img_and_label(lines): yield img, label else: while True: img_path = input("Please input the path of image: ") img = Image.open(img_path).convert('L') img = np.array(img) - 127.5 img = img[np.newaxis, ...] yield img, [[0]] return reader def num_classes(): '''Get classes number of this dataset. ''' return NUM_CLASSES def data_shape(): '''Get image shape of this dataset. It is a dummy shape for this dataset. ''' return DATA_SHAPE def train(batch_size, max_length, train_images_dir=None, train_list_file=None, cycle=False, shuffle=False, model="crnn_ctc"): generator = DataGenerator(model) if train_images_dir is None: data_dir = download_data() train_images_dir = path.join(data_dir, TRAIN_DATA_DIR_NAME) if train_list_file is None: train_list_file = path.join(data_dir, TRAIN_LIST_FILE_NAME) return generator.train_reader( train_images_dir, train_list_file, batch_size, cycle, max_length, shuffle=shuffle) def test(batch_size=1, test_images_dir=None, test_list_file=None, model="crnn_ctc"): generator = DataGenerator(model) if test_images_dir is None: data_dir = download_data() test_images_dir = path.join(data_dir, TEST_DATA_DIR_NAME) if test_list_file is None: test_list_file = path.join(data_dir, TEST_LIST_FILE_NAME) return paddle.batch( generator.test_reader(test_images_dir, test_list_file), batch_size) def inference(batch_size=1, infer_images_dir=None, infer_list_file=None, cycle=False, model="crnn_ctc"): generator = DataGenerator(model) return paddle.batch( generator.infer_reader(infer_images_dir, infer_list_file, cycle), batch_size) def download_data(): '''Download train and test data. ''' tar_file = paddle.dataset.common.download( DATA_URL, CACHE_DIR_NAME, DATA_MD5, save_name=SAVED_FILE_NAME) data_dir = path.join(path.dirname(tar_file), DATA_DIR_NAME) if not path.isdir(data_dir): t = tarfile.open(tar_file, "r:gz") t.extractall(path=path.dirname(tar_file)) t.close() return data_dir