import argparse import gym import numpy as np from itertools import count from collections import namedtuple import math import paddle import paddle.fluid as fluid import paddle.fluid.dygraph.nn as nn import paddle.fluid.framework as framework parser = argparse.ArgumentParser(description='PyTorch REINFORCE example') parser.add_argument( '--gamma', type=float, default=0.99, metavar='G', help='discount factor (default: 0.99)') parser.add_argument( '--seed', type=int, default=543, metavar='N', help='random seed (default: 543)') parser.add_argument( '--render', action='store_true', help='render the environment') parser.add_argument('--save_dir', type=str, default="./saved_models_ac") parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='interval between training status logs (default: 10)') args = parser.parse_args() env = gym.make('CartPole-v0') env.seed(args.seed) SavedAction = namedtuple('SavedAction', ['log_prob', 'value']) class Policy(fluid.dygraph.Layer): def __init__(self, name_scope): super(Policy, self).__init__(name_scope) self.affine1 = nn.FC(self.full_name(), size=128) self.action_head = nn.FC(self.full_name(), size=2) self.value_head = nn.FC(self.full_name(), size=1) self.saved_actions = [] self.rewards = [] def forward(self, x): x = fluid.layers.reshape(x, shape=[1, 4]) x = self.affine1(x) x = fluid.layers.relu(x) action_scores = self.action_head(x) state_values = self.value_head(x) return fluid.layers.softmax(action_scores, axis=-1), state_values with fluid.dygraph.guard(): fluid.default_startup_program().random_seed = args.seed fluid.default_main_program().random_seed = args.seed np.random.seed(args.seed) policy = Policy("PolicyModel") eps = np.finfo(np.float32).eps.item() optimizer = fluid.optimizer.AdamOptimizer(learning_rate=3e-2) def get_mean_and_std(values=[]): n = 0. s = 0. for val in values: s += val n += 1 mean = s / n std = 0. for val in values: std += (val - mean) * (val - mean) std /= n std = math.sqrt(std) return mean, std def sample_action(probs): sample = np.random.random() idx = 0 while idx < len(probs) and sample > probs[idx]: sample -= probs[idx] idx += 1 mask = [0.] * len(probs) mask[idx] = 1. return idx, np.array([mask]).astype("float32") def choose_best_action(probs): idx = 0 if probs[0] > probs[1] else 1 mask = [1., 0.] if idx == 0 else [0., 1.] return idx, np.array([mask]).astype("float32") def select_action(state): state = fluid.dygraph.base.to_variable(state) state.stop_gradient = True probs, state_value = policy(state) np_probs = probs.numpy() action, _mask = sample_action(np_probs[0]) mask = fluid.dygraph.base.to_variable(_mask) mask.stop_gradient = True loss_probs = fluid.layers.log(probs) loss_probs = fluid.layers.elementwise_mul(loss_probs, mask) loss_probs = fluid.layers.reduce_sum(loss_probs, dim=-1) policy.saved_actions.append(SavedAction(loss_probs, state_value)) return action def finish_episode(): R = 0 saved_actions = policy.saved_actions policy_losses = [] value_losses = [] returns = [] for r in policy.rewards[::-1]: R = r + args.gamma * R returns.insert(0, R) mean, std = get_mean_and_std(returns) returns = np.array(returns).astype("float32") returns = (returns - mean) / (std + eps) for (log_prob, value), R in zip(saved_actions, returns): advantage = R - value[0][0] log_prob_numpy = log_prob.numpy() R_numpy = np.ones_like(log_prob_numpy).astype("float32") _R = -1 * advantage * R_numpy _R = fluid.dygraph.base.to_variable(_R) _R.stop_gradient = True policy_loss = fluid.layers.elementwise_mul(_R, log_prob) policy_losses.append(policy_loss) _R2 = np.ones_like(value.numpy()).astype("float32") * R _R2 = fluid.dygraph.base.to_variable(_R2) _R2.stop_gradient = True value_loss = fluid.layers.smooth_l1(value, _R2, sigma=1.0) value_losses.append(value_loss) all_policy_loss = fluid.layers.concat(policy_losses) all_policy_loss = fluid.layers.reduce_sum(all_policy_loss) all_value_loss = fluid.layers.concat(value_losses) all_value_loss = fluid.layers.reduce_sum(all_value_loss) loss = all_policy_loss + all_value_loss loss.backward() optimizer.minimize(loss) policy.clear_gradients() del policy.rewards[:] del policy.saved_actions[:] return returns running_reward = 10 for i_episode in count(1): state, ep_reward = env.reset(), 0 for t in range(1, 10000): # Don't infinite loop while learning state = np.array(state).astype("float32") action = select_action(state) state, reward, done, _ = env.step(action) if args.render: env.render() policy.rewards.append(reward) ep_reward += reward if done: break running_reward = 0.05 * ep_reward + (1 - 0.05) * running_reward returns = finish_episode() if i_episode % args.log_interval == 0: print('Episode {}\tLast reward: {:.2f}\tAverage reward: {:.2f}'. format(i_episode, ep_reward, running_reward)) #print(returns) if running_reward > env.spec.reward_threshold: print("Solved! Running reward is now {} and " "the last episode runs to {} time steps!".format( running_reward, t)) fluid.save_dygraph(policy.state_dict(), args.save_dir) break