from __future__ import division import paddle.fluid as fluid import numpy as np import os # cudnn is not better when batch size is 1. use_cudnn = False if 'ce_mode' in os.environ: use_cudnn = False def cal_padding(img_size, stride, filter_size, dilation=1): """Calculate padding size.""" valid_filter_size = dilation * (filter_size - 1) + 1 if img_size % stride == 0: out_size = max(filter_size - stride, 0) else: out_size = max(filter_size - (img_size % stride), 0) return out_size // 2, out_size - out_size // 2 def instance_norm(input, name=None): # TODO(lvmengsi@baidu.com): Check the accuracy when using fluid.layers.layer_norm. # return fluid.layers.layer_norm(input, begin_norm_axis=2) helper = fluid.layer_helper.LayerHelper("instance_norm", **locals()) dtype = helper.input_dtype() epsilon = 1e-5 mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True) var = fluid.layers.reduce_mean( fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True) if name is not None: scale_name = name + "_scale" offset_name = name + "_offset" scale_param = fluid.ParamAttr( name=scale_name, initializer=fluid.initializer.TruncatedNormal(1.0, 0.02), trainable=True) offset_param = fluid.ParamAttr( name=offset_name, initializer=fluid.initializer.Constant(0.0), trainable=True) scale = helper.create_parameter( attr=scale_param, shape=input.shape[1:2], dtype=dtype) offset = helper.create_parameter( attr=offset_param, shape=input.shape[1:2], dtype=dtype) tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1) tmp = tmp / fluid.layers.sqrt(var + epsilon) tmp = fluid.layers.elementwise_add(tmp, offset, axis=1) return tmp def conv2d(input, num_filters=64, filter_size=7, stride=1, stddev=0.02, padding="VALID", name="conv2d", norm=True, relu=True, relufactor=0.0): """Wrapper for conv2d op to support VALID and SAME padding mode.""" need_crop = False if padding == "SAME": top_padding, bottom_padding = cal_padding(input.shape[2], stride, filter_size) left_padding, right_padding = cal_padding(input.shape[2], stride, filter_size) height_padding = bottom_padding width_padding = right_padding if top_padding != bottom_padding or left_padding != right_padding: height_padding = top_padding + stride width_padding = left_padding + stride need_crop = True else: height_padding = 0 width_padding = 0 padding = [height_padding, width_padding] param_attr = fluid.ParamAttr( name=name + "_w", initializer=fluid.initializer.TruncatedNormal(scale=stddev)) bias_attr = fluid.ParamAttr( name=name + "_b", initializer=fluid.initializer.Constant(0.0)) conv = fluid.layers.conv2d( input, num_filters, filter_size, name=name, stride=stride, padding=padding, use_cudnn=use_cudnn, param_attr=param_attr, bias_attr=bias_attr) if need_crop: conv = fluid.layers.crop( conv, shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1), offsets=(0, 0, 1, 1)) if norm: conv = instance_norm(input=conv, name=name + "_norm") if relu: conv = fluid.layers.leaky_relu(conv, alpha=relufactor) return conv def deconv2d(input, out_shape, num_filters=64, filter_size=7, stride=1, stddev=0.02, padding="VALID", name="conv2d", norm=True, relu=True, relufactor=0.0): """Wrapper for deconv2d op to support VALID and SAME padding mode.""" need_crop = False if padding == "SAME": top_padding, bottom_padding = cal_padding(out_shape[0], stride, filter_size) left_padding, right_padding = cal_padding(out_shape[1], stride, filter_size) height_padding = top_padding width_padding = left_padding if top_padding != bottom_padding or left_padding != right_padding: need_crop = True else: height_padding = 0 width_padding = 0 padding = [height_padding, width_padding] param_attr = fluid.ParamAttr( name=name + "_w", initializer=fluid.initializer.TruncatedNormal(scale=stddev)) bias_attr = fluid.ParamAttr( name=name + "_b", initializer=fluid.initializer.Constant(0.0)) conv = fluid.layers.conv2d_transpose( input, num_filters, name=name, filter_size=filter_size, stride=stride, padding=padding, use_cudnn=use_cudnn, param_attr=param_attr, bias_attr=bias_attr) if need_crop: conv = fluid.layers.crop( conv, shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1), offsets=(0, 0, 0, 0)) if norm: conv = instance_norm(input=conv, name=name + "_norm") if relu: conv = fluid.layers.leaky_relu(conv, alpha=relufactor) return conv